

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

INCREASING OPEN SOURCE SOFTWARE INTEGRATION
ON THE DEPARTMENT OF DEFENSE UNCLASSIFIED

DESKTOP

by

Steven Anthony Schearer

June 2008

 Thesis Advisor: Rex Buddenberg
 Second Reader: Douglas E. Brinkley

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2008

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Increasing Open Source Software Integration on
the Department of Defense Unclassified Desktop
6. AUTHOR(S) Steven A. Schearer

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The United States Department of Defense (DoD) spends hundreds of millions of dollars each year on desktop
computer software. While some of this expenditure goes to fund special-purpose military software, much of it is
absorbed by license fees for computer operating systems and general-purpose office automation applications.
Although many of these tools may serve their respective purposes rather well, there are many reasons to consider
adopting alternative software solutions alongside the existing standards. Improvements to cost, security, and flexibility
are some of the benefits that may be realized by integrating some of the many available mature, robust Open Source
Software (OSS) solutions. In particular, Linux-based operating systems have helped bring free, open source software
into mainstream use in businesses, homes, and government offices around the world, precisely because of these
potential benefits. This thesis examines the feasibility of using OSS, particularly Linux-based operating systems, on
unclassified DoD desktop computers. Specific attention is paid to performing office automation tasks that are currently
handled by U.S. Air Force Secure Desktop Configuration, Windows-based computers. Additionally, this document
examines many of the regulations and policies that shape the procurement and operational environments in which
OSS must compete and function.

15. NUMBER OF
PAGES

89

14. SUBJECT TERMS Open Source Software, OSS, Linux, Department of Defense,
Unclassified, Desktop, Operating System, FOSS, GPL, PKI

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

INCREASING OPEN SOURCE SOFTWARE INTEGRATION ON THE
DEPARTMENT OF DEFENSE UNCLASSIFIED DESKTOP

Steven A. Schearer

Captain, United States Air Force
B.A., University of Florida, 1999

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS TECHNOLOGY
(COMMAND, CONTROL AND COMMUNICATIONS (C-3))

from the

NAVAL POSTGRADUATE SCHOOL
June 2008

Author: Steven A. Schearer

Approved by: Rex Buddenberg
Thesis Advisor

Douglas Brinkley, EdD
Second Reader

Dan C. Boger, PhD
Chairman, Department of Information Sciences

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The United States Department of Defense (DoD) spends hundreds of

millions of dollars each year on desktop computer software. While some of this

expenditure goes to fund special-purpose military software, much of it is

absorbed by license fees for computer operating systems and general purpose

office automation applications. Although many of these tools may serve their

respective purposes rather well, there are many reasons to consider adopting

alternative software solutions alongside the existing standards. Improvements to

cost, security, and flexibility are some of the benefits that may be realized by

integrating some of the many available mature, robust Open Source Software

(OSS) solutions. In particular, Linux-based operating systems have helped bring

free, open source software into mainstream use in businesses, homes, and

government offices around the world, precisely because of these potential

benefits. This thesis examines the feasibility of using OSS, particularly Linux-

based operating systems, on unclassified DoD desktop computers. Specific

attention is paid to performing office automation tasks that are currently handled

by U.S. Air Force Standard Desktop Configuration, Windows-based computers.

Additionally, this document examines many of the regulations and policies that

shape the procurement and operational environments in which OSS must

compete and function.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. OBJECTIVE ... 1
B. SCOPE... 1
C. RESEARCH QUESTIONS ... 2
D. OUTLINE AND CHAPTER ORGANIZATION 2

II. BACKGROUND.. 5
A. OVERVIEW .. 5

1. Open Source Software Introduction 5
2. Open Source Software Initial Acquisition Costs................... 7
3. Vendor Lock-in... 8
4. About the Linux Kernel ... 10
5. Linux Distributions .. 14

B. CURRENT UNCLASSIFIED DESKTOP SYSTEMS 14
1. Consolidated Acquisitions.. 14
2. Standardized Configurations.. 15

III. OPEN SOURCE SOFTWARE OPTIONS AND CAPABILITIES................... 19
A. FUNCTIONAL COMPARISON .. 19

1. Operating System .. 19
2. Enterprise Management .. 20
3. Anti-Virus.. 21
4. Smart Card Middleware... 22
5. Productivity Suites .. 22
6. E-mail .. 25
7. Other Third-party Viewers... 27
8. Substitutions/Equivalents Overview.................................... 27

B. PUBLIC KEY INFRASTRUCTURE AND COMMON ACCESS
CARD... 29
1. Overview and Regulations.. 29
2. Technical Issues .. 29

C. OTHER SECURITY BENEFITS AND CONCERNS........................... 32
1. Vulnerability and Exploit Overview 32
2. Transparency and Backdoors .. 33
3. Department of Homeland Security Code Scan.................... 35

D. BOOTABLE “LIVE” OPERATING SYSTEMS 36
E. APPLICATION AND CODE RE-USE... 36

IV. POTENTIAL OPEN SOURCE SOFTWARE CHALLENGES 39
A. REGULATIONS GOVERNING SOFTWARE USE............................. 39

1. Information Assurance.. 39
2. Licensing.. 41
3. Further Intellectual Property Issues..................................... 43

 viii

B. COMMUNITY-SPECIFIC SOFTWARE NEEDS................................. 44
1. Open Source Software Modification 44
2. Porting and Application Compatibility................................. 45
3. Virtualization and Centralized Computing........................... 47

C. HETEROGENEOUS MIX AND SUPPORT CHALLENGES............... 51
1. End Users... 51
2. Systems Administrators ... 51

V. CONCLUSIONS.. 55
A. RECOMMENDATIONS TO DEPARTMENT OF DEFENSE

INFORMATION TECHNOLOGY MANAGERS 55
1. Official Guidance Overview .. 55
2. Open Architecture in Government Contracting 56

B. RECOMMENDATIONS FOR FUTURE RESEARCH......................... 58
C. CLOSING THOUGHTS.. 59

LIST OF REFERENCES.. 63

APPENDIX A. COMMON ACCESS CARD TESTING 69
A. TEST ENVIRONMENT... 69
B. FIREFOX WEB BROWSER:.. 70
C. EVOLUTION E-MAIL CLIENT: .. 72

INITIAL DISTRIBUTION LIST ... 73

 ix

LIST OF FIGURES

Figure 1. ICS Viewer in Wine on Red Hat Linux .. 46
Figure 2. Windows in VMware on Red Hat Linux .. 48
Figure 3. Windows Remote Desktop from Linux.. 49
Figure 4. Citrix XenDesktop Virtualization ... 50
Figure 5. Vmware Virtual Desktop Infrastructure ... 50
Figure 6. The Red Hat Network ... 53

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Kernel Lines of Code Changed, by Employer..................................... 12
Table 2. U.S. Air Force SDC, November, 2007 .. 16
Table 3. List of SDC/OSS Equivalents/Substitutions.. 28

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

This document was written entirely using the OpenOffice.org 2.3 word

processor running on the Ubuntu 7.10 Linux-based operating system. Online

research was conducted using the Firefox web browser, and research e-mails

were exchanged primarily by means of the Evolution e-mail client. These last

two applications were used (as required) in conjunction with the Common Access

Card for interoperability with the Department of Defense Public Key

Infrastructure. All of the software products mentioned are open source software.

They all proved more than adequate for their respective tasks, and all of them

were legally free to download, use, and (if so desired) modify. In the intervening

months since this research project was started, each of these tools have also

been actively maintained, released as updated versions with sometimes

significantly enhanced features. I would like to thank the open source

community; individuals, government agencies and corporations who helped

develop this amazing array of software.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. OBJECTIVE

The United States Department of Defense spends hundreds of millions of

dollars each year on desktop computer software. While some of this expenditure

goes to fund special-purpose military software, much of it is absorbed by license

fees for computer operating systems and general-purpose office automation

applications. Although many of these tools may serve their respective purposes

rather well, there is reason to consider adopting alternative software solutions

alongside the existing standards. Improvements to cost, security and flexibility

are some of the benefits that may be realized by integrating some of the many

open source software solutions that now exist. In particular, Linux-based

operating systems have helped bring free, open source software into the

mainstream in businesses, homes and government offices around the world,

precisely because of these potential benefits.

The Department of Defense (DoD) has made use of Linux-based systems

in both the classified and server arenas, but there is room for increased use. The

objective of this thesis is to examine the feasibility of incorporating Linux-based

operating systems and other open source desktop application software

alternatives on desktop computers across Department of Defense unclassified

networks.

B. SCOPE

This thesis will begin with an examination of the current state of

unclassified desktop software on Department of Defense computer systems, in

part to determine what type of functionality and interoperability must be provided

by any prospective open source solutions. The analysis will then focus on the

integration of Linux-based systems into a Windows-dominated local area

network. Server configurations are beyond the scope of the present paper,

 2

which will focus solely on unclassified desktop technology. It is worth noting that

many of the assembled facts and conclusions also apply to the DoD classified

network environment.

C. RESEARCH QUESTIONS

 What, if any, are the potential advantages and disadvantages of

introducing open source operating systems and other applications into the

unclassified network environment?

 Can open source-based desktops integrate seamlessly into a network of

primarily Windows-based servers and desktop clients?

 Can open source-based desktops accommodate the burgeoning Public

Key Infrastructure, to include the Common Access Card token?

 How do federal government and Department of Defense regulations affect

the procurement and use of open source software?

D. OUTLINE AND CHAPTER ORGANIZATION

This thesis is organized as follows:

Chapter II provides the reader with an overview of open source software

and its applicability to the Department of Defense. Special attention is paid to the

Linux kernel and derived operating system distributions. Next, the discussion

moves to current unclassified desktop systems, with an emphasis on the

standardized configuration used by the U.S. Air Force.

Chapter III continues with an examination of how open source software

might be able to satisfy the needs of the user as they are currently met by the

current U.S. Air Force proprietary software setup. A separate section is devoted

to open source software interoperability with the Department of Defense Public

Key Infrastructure and Common Access Card, due to their increasing

significance. The chapter concludes with a review of open source software

security.

 3

Chapter IV begins with an overview of significant federal and Department

of Defense information assurance policies that regulate the use of open source

(and proprietary) software on official networks. The chapter continues with a look

at some of the legal and technical challenges facing widespread Department of

Defense adoption of open source software.

Finally, Chapter V briefly covers acquisition policy and offers

recommendations to any Department of Defense officials who may be in a

position to procure open source software for their respective agencies. It

concludes with a brief list of topics that were perhaps beyond the scope of this

thesis, but warrant further study.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND

A. OVERVIEW

1. Open Source Software Introduction

General purpose computer workstation software can be categorized in

many ways, such as by function, target architecture, or cost. One of the most

fundamental and increasingly important distinctions lies in the accessibility to and

licensing of a program’s source code. This code is the human-readable, though

perhaps arcane-looking blueprint of a program’s design. With the source code, a

programmer can review the underlying design of a program and make any

conceivable change to that program’s functionality. By means of a compiler, the

programmer can then transform the code into a binary format that only the

computer can interpret. At that point, the program can be run as a potentially

useful tool like a web browser or word processor, but it can no longer be

modified, and its inner workings cannot be examined. Therefore, free and legal

access to the source code grants the user or operating agency considerable

power and control. Commercial, off-the-shelf (COTS) software for which source

code is freely available is known as Open Source Software (OSS). The Open

Source Initiative (http://www.opensource.org) further refines the OSS definition to

include free redistribution of source code and permission to modify and

redistribute derivative works, among other things.

Conversely, the Department of the Navy (DON) Chief Information Officer

established in 2007 that “commands will treat OSS as COTS when it meets the

definition of a commercial item . . . This will allow the DON to utilize OSS

throughout the enterprise when acquiring capabilities to meet DON business and

warfighter requirements” (U.S. DON CIO, 2007). Due to the public availability of

source code, mature OSS products are often the result of considerable public

collaboration. And since most contributors (including those from numerous

 6

corporations such as IBM, Oracle and Google) would object to having their work

surreptitiously bundled up and sealed into another vendor’s closed-source

product, OSS is typically distributed with one of several licenses that demand re-

release of any modified source whenever modified binary files are published.

Partly because of these licenses, the software is usually (though not always)

available free of charge, if only in a non-compiled, source-only format. Clearly,

the up-front cost savings can be significant if a software package is available for

free. However, many popular OSS operating systems and applications are sold

in a more usable, pre-compiled format by companies who tailor their products to

meet certain needs and hope to generate sales largely on the basis of continuing

support. One example is the Red Hat Corporation, which sells Red Hat

Enterprise Linux in both desktop and various server configurations. The source

code to these products is still available free of charge.

OSS such as Red Hat Enterprise Linux is already in use throughout the

Department of Defense (DoD) in everything from embedded vehicle computers to

highly relied-upon directory and web servers. In their 2003 report commissioned

by the Defense Information Systems Agency, MITRE came to the conclusion that

“FOSS software plays a far more critical role in the DoD than has been generally

recognized. The value of FOSS to the DoD appears to be greatest in four broad

categories: Infrastructure Support, Software Development, Security, and

Research” (MITRE, 2003, p. 17). In fact, it will likely serve as the basis for the

U.S. Army’s Future Combat Systems (Klein, 2008). It has, however, failed to

make inroads in the general-purpose DoD desktop computing environment.

Possible reasons for this are many and varied, but the most visible and

significant barrier to entry is undoubtedly the dominant global market share of the

Microsoft Windows operating systems and accompanying Office productivity

suite. Having established a massive user base with applications, file formats and

network protocols that are exclusive to the Windows/Office environment,

Microsoft has developed the de facto standard for desktop computing.

 7

 Those who would stray from this path risk sacrificing interoperability,

perhaps even with their organization’s own legacy programs and data files.

However, considerable progress has been made in recent years to allow OSS

programs to work with Microsoft Office files and interact with Windows-based

computers. Full Application Programming Interface (API) compatibility remains

the major stumbling block, but with the advent of web-based computing, many

applications are now web-dependent instead of OS-dependent (Boutin, 2006).

These facts, along with OSS offerings that rival their closed-source counterparts,

are making OSS an increasingly attractive alternative to businesses and

governments around the world (CSIS, 2007).

By the very nature of its name, Open Source Software brings perhaps its

biggest benefit to the table: peer review. The quality benefits imparted by code

review cannot be overstated. By some estimates, inspections eliminate 70 to 80

percent of all software defects (Petross, MN3331 lecture, Winter 2008). In his

book Managing the Software Process, Watts Humphrey cites many noteworthy

examples of the great successes companies have had in examining code,

including the following: “In an AT&T Bell Laboratories dial-up central switching

system application, inspections were reported to be 20 times more effective than

testing in finding errors” (Humphrey, 1989, p. 185).

2. Open Source Software Initial Acquisition Costs

As previously mentioned, not all OSS is intended to be used for free. The

best example of this is Red Hat Enterprise Linux (RHEL). Since it is an operating

system largely derived from other publicly developed OSS, it is subject to several

popular OSS licenses, including re-release of modified source code. This is

demanded in particular by the GNU (a recursive acronym for GNU's Not Unix)

General Public License, perhaps the most popular OSS license in use. While

Red Hat is under no obligation to release free binary, immediately usable

versions of its product, it must make the source code available. Other entities

can (and do) then take this code, re-compile it into binary form, and legally walk

 8

away with a nearly identical, fully functional binary product. The best-known

example of this is CentOS, a product that is in almost every way a clone of

RHEL, with Red Hat's trademarked logos removed.

To create and protect a revenue stream, therefore, Red Hat requires that

users of RHEL pay a subscription fee in order to download updates and

additional programs from the Red Hat Network. This fee also entitles users to

unlimited web support with a two-business-day turnaround time. The retail price

for a one year, basic subscription to this service is $80, or three years for $228.

“Security errata and select mission-critical bug fixes” are available for seven

years from the general availability of the product. By comparison, as of the

writing of this paper, the latest version of Windows Vista Ultimate costs between

$300 and $400 through most major web retailers. It comes with 90 days of

telephone support, after which users must pay a $59 per-call fee. Bug fixes and

other software updates are provided by Microsoft for a period of five years after

product release. The retail prices listed here would no doubt be significantly

lower in the case of a bulk contract purchase. And while the OSS offering in this

case is cheaper than the proprietary alternative, these figures are used primarily

to illustrate the point that OSS can carry a significant up-front financial cost. On

the other hand, it is worth pointing out that RHEL is not an operating system

alone; it is delivered with a complete office suite (OpenOffice.org) and hundreds

of other programs that can optionally be installed from the DVD media or through

the Red Hat Network.

3. Vendor Lock-in

One major factor that exacerbates the cost dimension of proprietary

software is vendor lock-in, which occurs when a customer becomes dependent

on a piece of software (or hardware) to the extent that switching vendors would

present significant challenges and costs. Much of vendor lock-in is dependent on

whether or not the software uses open communications protocols and document

format specifications, but it can also apply to the underlying API’s. In 2004, the

 9

European Union (EU) Commission released a decision regarding Microsoft’s

antitrust actions in the EU. In it, they referenced an internal memo prepared for

Bill Gates from Microsoft C++ General Manger Aaron Contorer (European

Commission, 2004, p. 127):

The Windows API is so broad, so deep, and so functional that most
ISV's [Independent Software Vendors] would be crazy not to use it.
And it is so deeply embedded in the source code of many Windows
apps that there is a huge switching cost to using a different
operating system instead It is this switching cost that has
given customers the patience to stick with Windows through all our
mistakes, our buggy drivers, our high TCO [Total Cost of
Ownership], our lack of a sexy vision at times, and many other
difficulties Customers constantly evaluate other desktop
platforms, [but] it would be so much work to move over that they
hope we just improve Windows rather than force them to move. In
short, without this exclusive franchise called the Windows API, we
would have been dead a long time ago . . .

In the same document, Microsoft Senior Vice President Bob Muglia is

quoted as saying “The Windows franchise is fueled by application development

which is focused on our core API’s” (European Commission, 2004, p. 127).

 The realities behind these powerful statements have been felt and

understood by users, managers, developers and resellers throughout the

computing world for almost two decades. Those ISV’s that want to earn

maximum profit from their coding efforts typically target the Windows API and

corresponding user base. This development results in a large pool of available

Windows applications. Correspondingly, users who want maximum commercial

software choice tend to purchase Windows-based systems, creating a large

Windows user base, and so on and so forth.

Operating system-specific application development creates this interesting

chicken-and-egg scenario for supply and demand, but there should be no such

inherent dilemma for disparate interconnected computer systems. However,

when organizations choose proprietary software solutions with closed

communication protocols, vendor lock-in occurs here, too. For example, many

information systems managers understand that if they wish to use Microsoft

 10

Outlook in its native Mail API mode for corporate e-mail, calendar, task and other

groupware functions, then they must continue to use Microsoft Exchange as the

groupware server application. And if they wish to use Exchange, they must run it

on a Microsoft Windows-based server. Likewise, if they want the Windows

server to operate seamlessly with other corporate servers such as the directory

and client management system, then it must all be tied together with Microsoft

Active Directory. (These relationships tend to hold true in reverse, too). This

inability to incorporate new, competing technologies from different vendors

presents an interesting, if unfortunate cost variable far beyond the simple price

point of the software. Without a massive investment in infrastructure across the

board, the organization is effectively locked-in to one vendor’s solutions. The

U.S. Navy’s Open Architecture Contract Guidebook addresses this in its Life

Cycle Affordability checklist: “Have proprietary products been avoided to avoid

vendor lock-in and sole source environments?” (PEO-IWS, 2006 p. 56).

The U.S. Army seems to have recognized the potential for vendor lock-in

and has addressed it in the Future Combat Systems (FCS) program. In

particular, the operating system software to be used across the FCS, known as

they System of Systems Common Operating Environment (SYSCOE) is being

developed by Boeing and will be based on Linux. According to the Washington

Post, “Boeing and the Army said they chose not to use Microsoft's proprietary

software because they didn't want to be beholden to the company. Instead, they

chose to develop a Linux-based operating system based on publicly available

code” (Klein, 2008). Although the entire SYSCOE platform will undoubtedly be a

complex product, the OSS-based architecture may level the playing field for

future support contracts; any number of Linux-savvy vendors could theoretically

step in to assume programming and support roles.

4. About the Linux Kernel

Any casual discussion about OSS will likely include mention of Linux, as it

is perhaps the most prominent piece of Free, Open Source Software in the world.

 11

In everyday language, Linux has come to be known as a complete operating

system, to include graphical user interface features and rich multimedia

capabilities. However, the word Linux officially refers only to the operating

system kernel; that core piece of software that controls system hardware and

allows the computer to interpret human language commands, among other

things. DoD information technology managers unfamiliar with Linux are often

curious about who exactly owns and maintains this piece of technology upon

which we already rely so heavily. The Linux kernel is a patchwork of

contributions by thousands of individuals, some working as volunteers and others

in the employ of companies which may stand to benefit from improvement of the

operating system. In April 2008, the Linux Foundation published a study that

cataloged contributions to the 2.6.x Linux kernel according to a series of metrics.

The paper's authors attempted to track down the employers of Linux kernel

developers in an effort to shed light on which companies were behind some of

the kernel's growth. Some of this research is summarized in Table 1 below. The

following excerpt clarifies the findings in the table:

There are a number of developers for whom we were unable to
determine a corporate affiliation; those are grouped under
"unknown" With few exceptions, all of the people in this
category have contributed 10 or fewer changes to the kernel over
the past three years, yet the large number of these developers
causes their total contribution to be quite high. The category
"None," instead, represents developers who are known to be doing
this work on their own, with no financial contribution happening
from any company. The top 10 contributors, including the groups
"unknown" and "none" make up over 75% of the total contributions
to the kernel. It is worth noting that, even if one assumes that all of
the "unknown" contributors were working on their own time, over
70% of all kernel development is demonstrably done by developers
who are being paid for their work.

 12

Table 1. Kernel Lines of Code Changed, by Employer
Source: Corbet et al., 2008

 This 70% of paid kernel development is done not out of charity. Rather,

the backing corporations understand that OSS can be profitable. A more

capable and robust Linux kernel, devoid of licensing fees and royalties, makes an

extremely powerful and cost-effective foundation on which to develop an ever-

growing number of information systems. Linux is used in everything from

embedded systems and network appliances to enterprise servers and some of

the world's most powerful multi-processor supercomputers.

 13

 Since the kernel updates are released on a schedule and contributions are

checked or “signed off” by someone before public release, there must be some

overarching authority maintaining responsibility and a degree of ownership. In

the purest sense, that authority is Linus Torvalds, the original kernel's creator. In

his book Open Life – The Philosophy of Open Source, Henrik Ingo colorfully

explains the Torvalds' role as one of a “benevolent dictator,” albeit one with

strangely limited power:

What would happen if for some reason Linus decided to screw
things up and out of spite started making stupid decisions for
Linux? Within twenty-four hours the other Linux developers would
leave him to fool around on his own, make a copy of the Linux
source code somewhere Linus couldn’t get his hands on it and
keep working without him. It’s also extremely likely that the hackers
involved would quickly elect – more or less consciously and more
or less democratically – a new benevolent dictator.

All that is possible because the code itself is open and freely
available for anyone to use. As dictator, Linus has all the authority
while at the same time having no power whatsoever. The others
see him as their leader only because he is so talented – or
benevolent. There is a fascinating equilibrium of power and
freedom. The dictator has the power and the others have the
freedom to vote with their feet.

While Linus Torvalds retains this “ownership” of the kernel, in practice,

and due to the volume of code in question, other individuals have assumed

responsibility for different branches. According to Ingo (p. 45):

Linus in particular takes the advice of his closest and longer-term
colleagues, who within the community are known as his lieutenants.
These lieutenants are like mini-dictators, and each one has their
own area of responsibility within the project. Just as for Linus, their
authority is based on talent proven over a period of years and the
trust that it has generated. The dictatorship is therefore a
meritocracy.

 14

5. Linux Distributions

Because the word “Linux” has differing meanings to different people, the

term “Linux distribution” is used to bridge the gap between the stand-alone kernel

and an entire packaged, fully functional Linux desktop or server operating

system. As of early 2008, the Linux advocacy site http://www.linux.org listed 220

actively maintained distributions.

While Linux kernel releases remain the domain of Linus Torvalds,

distributions can be created and maintained by anyone. Each Linux distribution,

while maintaining some basic level of commonality with other distributions (if only

due to kernel pedigree), brings something unique to its target user audience. For

example, Damn Small Linux (DSL) was stripped of a multitude of features found

in most distributions in favor of delivering a very lightweight operating system

with minimal system memory requirements. It runs acceptably on old hardware

and boots from removable media such as CDs and USB memory sticks. The

Backtrack distribution was created with computer system forensics in mind.

Ubuntu, sponsored by the Canonical Corporation, has placed its emphasis on

user-friendliness. As a result, it has gained a significant user base over the past

few years, rising to become the most popular distribution (in the last six months)

on http://distrowatch.com, a popular Linux distribution-tracking website. Finally,

Red Hat Enterprise Linux, a fee-based product, has targeted the government and

corporate markets, offering sophisticated directory server capabilities, a strict

software testing and release methodology, and other features prized by

organizations with a large number of managed client systems.

B. CURRENT UNCLASSIFIED DESKTOP SYSTEMS

1. Consolidated Acquisitions

The Department of Defense has not mandated exclusive use of the

Microsoft Windows operating system for unclassified desktop computing.

Rather, following the civilian marketplace, the Services' networks have evolved to

 15

use Microsoft's software as their primary unclassified desktop environments.

Since the early part of this century, the Services have also taken it upon

themselves to formally standardize their purchasing and configuration of

Microsoft software. This was done in part to reduce the costs associated with

multiple smaller buys (leveraging volume licensing agreements) and inadvertent

redundant license purchases across the enterprise. The U.S. Army led the

charge in Service-wide Microsoft Enterprise Licensing Agreements (ELAs) in

2003, saying “the deal would save millions of dollars in operational costs and

improve software license and asset management” (Wait, 2003). Through its own

recent 500 million dollar, six-year Microsoft ELA, the U.S. Air Force consolidated

38 separate purchase agreements and projected expected savings of over 100

million dollars. In both cases, however, security was at least as important as cost

in the ELA decision. In fact, John Gilligan, U.S. Air Force Chief Information

Officer at the time that Service's ELA was established, stated that “The major

driver was probably security.” The reasoning behind Gilligan's assertion is

described in the following section.

2. Standardized Configurations

In 2006, to reap the security benefits of its new ELA, the U.S. Air Force

worked directly with Microsoft to deploy a standardized version of the Windows

XP desktop operating system, dubbed the Standard Desktop Configuration

(SDC). By means of very deliberate configuration control, this effort was “part of

an overall objective to increase security and reduce lifecycle management costs

associated with desktop computer systems” (Yasin, 2007). The SDC includes

not only the operating system, but also other elements considered essential to

general productivity, systems management and security in the Air Force

enterprise network (see Table 2). At the end of 2007, the SDC was being

upgraded to the Windows Vista operating system and the Office 2007

productivity suite.

 16

Table 2. U.S. Air Force SDC, November, 2007
 Source: U.S. Air Force 754th Electronic Systems Group

The U.S. Air Force is not alone in its standardization efforts. The Army

produces a “Gold Master” and the U.S. Navy has its own “Workstation Baseline

Software Configuration Gold Disk,” both of which are Service-specific versions of

the SDC. At the federal level, “The Office of Management and Budget requires

all agencies to migrate to a standard desktop configuration for Microsoft

Windows XP and Vista environments by February 2008” (Yasin, 2007). These

standardization efforts, while focused on the Microsoft Windows platform, do not

demand Service-wide use of Microsoft products; they simply mandate a certain

configuration when Microsoft products are used. Similar security-based standard

Application Manufacturer Version
Windows XP SP2 with Firewall Enabled Microsoft SP2
SMS 2003 Client Microsoft 2003
Norton Anti-Virus Symantec 10.0.2
.NET Framework SP2 Microsoft 1.1
ActivCard Gold Card Reader Software Activcard 3.0 FP1 USAF
Office 2003 Microsoft 2003
Visio 2003 Viewer Microsoft 2003
ICS Viewer PureEdge 6.0.1
MasterKey Plus (for DMS) Boldon James 4.2.2
DoD Banner w/Screen Saver DoD 3.1
Internet Explorer Microsoft 6.0.2900.2810
Acrobat Reader Adobe 7.0.7
Quicktime Player Apple 7.0.4
Windows Media Player Microsoft 10
Java Runtime Engine Sun 1.5
Macromedia Flash Player Plug-in Macromedia Latest
Shockwave Player Plug-In Macromedia Latest
MDAC Microsoft Latest
DoD PKI Certificates DoD

 17

configuration guidelines are also dictated by the Defense Information Systems

Agency (DISA) for any Unix-like platforms, to include Linux.

All of the standardization taking place in the Microsoft-based DoD

networks actually simplifies the task of integrating Linux-based systems. First, it

provides a solid system architecture baseline with which any foreign hosts must

interact. Second, it establishes capability baselines; minimal functionality

specifications which must be met in order for the new systems to be considered

adequate peers.

 18

THIS PAGE INTENTIONALLY LEFT BLANK

 19

III. OPEN SOURCE SOFTWARE OPTIONS AND CAPABILITIES

A. FUNCTIONAL COMPARISON

1. Operating System

The U.S. Air Force Standard Desktop Configuration offers a good starting

point from which to evaluate potential OSS alternatives. At the top of the list in

Table 2, the operating system establishes the foundation for a comprehensive

system configuration. While there are several noteworthy OSS operating

systems, including the mature Free BSD and Minix operating systems, DoD

agencies are restricted by instructions and regulations as to which operating

systems may be used on official, production networks. This topic is addressed

further in Chapter V of this document.

 In short, as described by the U.S. Air Force Communications Agency in a

telephone interview on April 25 2008, operating systems are only considered for

use if they have been certified at Evaluated Assurance Level (EAL) 4+ in the

National Information Assurance Partnership's (NIAP) Common Criteria

Evaluation and Validation Scheme (CCEVS). Additionally, certification testing for

EAL 4+ must have taken place in a U.S. lab, per DoD Instruction 8500.2 and the

NIAP's requirements for Common Criteria Testing Laboratories. In the OSS

world, this limits options to two vendors' Linux distributions. As of the writing of

this document, only Red Hat Enterprise Linux (various versions 4 and 5) and

SUSE Linux Enterprise Server (version 10) had Common Criteria EAL 4+ from

U.S. labs, according to the NIAP-CCEVS Validated Products List. In the past

year, Sun Microsystems has made strides in opening the source to its Solaris

operating system, and version 10 has been awarded EAL 4+ (albeit from a

Canadian lab). However, the OpenSolaris project is not entirely the same as the

Solaris operating system. According to the http://OpenSolaris.org website, it is

“an open source project sponsored by Sun Microsystems, Inc, that is initially

 20

based on a subset of the source code for the Solaris Operating System... [It] will

find a variety of uses, including being the basis for future versions of the Solaris

OS product, other operating system projects, and third-party products and

distributions.”

 Primarily because of accessibility (in the form of a Naval Postgraduate

School site license), the Red Hat Enterprise Linux 5 Desktop distribution was

informally evaluated for the purposes of this study. In particular, it had to meet

the author's needs as a general-purpose workstation, capable of using the same

network resources and performing the same tasks as a similar Windows XP

workstation. In relation to these goals, the RHEL system performed well. With

its wired Ethernet connection to the Naval Postgraduate School's local area

network, the system provided easy access to shared drives, intranet websites

and printers. Any necessary configuration was accomplished entirely in the

point-and-click graphical user interface.

2. Enterprise Management

As noted next on the SDC list, Windows clients on many military

installations are equipped with the Microsoft Systems Management Server (SMS)

client-side application. This application interfaces with an SMS server to allow

for remote control, inventory, and other types of configuration management.

While this particular piece of software is unique to the Microsoft Windows

environment, RHEL offers similar tools that would be highly useful in remotely

managing RHEL desktop systems. The Red Hat Network web-based

management system provides inventory capabilities for all registered systems

and allows administrators to remotely deploy or remove software packages to

and from specified groups of systems. Enterprise-wide system management,

while somewhat beyond the scope of this document, cannot be overlooked if a

large number of Linux-based clients are to be introduced into an otherwise

Windows-dominated network.

 21

3. Anti-Virus

Since its inception, the Linux kernel has been far less affected by

computer malware than the various Windows releases. Whether or not this

stems largely from the fact that the operating system is significantly less targeted

by malware authors is a matter of debate. The other side of this argument

typically states that the massive peer review enjoyed by OSS gives it a much

cleaner, robust code base, as well as a faster and more transparent correction

mechanism for any discovered flaws. According to one recent estimate, out of

over 236,000 malware items, “only about 700 are meant for the various

Unix/Linux distributions” (van Oers, 2007).

 While many Linux users do not employ any anti-virus software

whatsoever, DoD regulations stipulate otherwise. The Defense Information

Systems Agency (DISA) is responsible for establishing such policy Department-

wide (DISA STIG, 2006):

Department of Defense Directive (DODD) 8500.1 establishes policy
and assigns responsibilities to the Defense Information Systems
Agency (DISA) to develop and provide security configuration
guidance for IA and IA-enabled IT (Information Technology)
products in coordination with the National Security Agency (NSA).
Paragraph 4.18 of the 8500.1 states, "All IA and IA-enabled IT
products incorporated into DOD information systems shall be
configured in accordance with DOD-approved security configuration
guidelines." DISA Field Security Operations (FSO) develops the
guidelines, which are called Security Technical Implementation
Guides. any UNIX based operating system in use in a DOD
environment is subject to all relevant UNIX security requirements
and must be capable of STIG compliance as verified by a Security
Readiness Review (SRR).

According to DISA's Unix STIG (a general document for Unix-related

systems which also specifically applies to Linux) Security Readiness Review

(SRR) Checklist, anti-virus software must be installed and set to scan the entire

system automatically at weekly intervals. While the U.S. Air Force SDC uses

Norton (Symantec) Anti-Virus Corporate Edition, the STIG SRR refers to the

McAffee command-line tool for Unix, and demands “an approved DoD virus scan

 22

program” (DISA Unix SRR, p. 269). Whether it is used to defend against the few

known threats, or to prevent Windows malware from being propagated via the

Linux systems, anti-virus software is a requirement for DoD Linux clients.

4. Smart Card Middleware

One increasingly important distinguishing feature of the RHEL 5

distribution is its fully functional, out-of-the-box smart card support for many card

readers. Smart cards such as the DoD's Common Access Card (CAC) provide

dual-factor authentication and encryption capabilities for more secure network

log-ins and e-mail. In addition to the usual open source command-line tools, Red

Hat provides its own “Smart Card Manager” graphical system panel applet. The

combination of these programs negates the need for (and expense of) additional

middleware, such as the ActivCard Gold software used on the Windows XP

workstation. This topic is covered more extensively in section B of this chapter,

is it is quickly becoming essential to DoD computing.

5. Productivity Suites

With regards to office automation, OpenOffice.org (the name of an

application, not just its website) has emerged as the predominant open source

office productivity suite. OpenOffice.org (known as OOo) is free of charge and

comes with a word processor, as well as spreadsheet, presentation, schematic

drawing and database programs. While OOo has made great progress in terms

of being able to read from and write to Microsoft Office file formats, the closed

(and constantly changing) nature of those binary file formats has historically

made interoperability a challenging prospect for OOo programmers. Making the

process easier was Microsoft's release of specifications on the Word, PowerPoint

and Excel binary file formats in February of 2008

(http://www.microsoft.com/interop/docs/officebinaryformats.mspx). Currently, the

OOo 2.4 word processor “Writer” can read from and write to Microsoft Office

Word files from versions 6.0 to 2007. In fact, Writer was used exclusively to

compose and edit this document, which was originally based on a Microsoft

 23

Word 2003 template. Writer also has the built-in ability to export documents in

the ubiquitous Portable Document Format (PDF); another requirement for final

submission of this thesis.

Weighing against OOo is its lack of full compatibility with Microsoft Office

files, as that suite is the de facto standard throughout not only the DoD, but much

of the business world. While importing Office files is usually quite successful,

irregularities and discrepancies sometimes surface. OOo Draw, a Visio-like

program, cannot open or save to Microsoft Visio files at all, and Word/Excel

users who wish to use the OOo Writer/Calc programs will not be able to utilize

any existing Word/Excel macros. The Visio-related shortcomings of OOo are

primarily related to importing and exporting native Visio files. One work-around is

to save Visio files in the Visio-XML format instead. The OSS application Dia, by

means of a plug-in, can then import, manipulate and export the files.

Alternatively, users can switch to the more openly modifiable scalable vector

graphics (SVG) format, which can be manipulated by a number of OSS

applications, including Dia and OOo Draw.

Although these limitations will probably be of limited impact to the average

office staff, they will undoubtedly cause some level of frustration among “power

users.” To further assist in making a comprehensive comparison, Idealware, a

nonprofit software review organization, has published a fairly thorough feature

review comparing Microsoft Office and OOo at

http://www.idealware.org/articles/msoffice_vs_openoffice.php. In addition to the

features previously mentioned, Idealware notes that OOo Writer does not contain

a grammar checker, whereas Word 2003 does. A comparatively rudimentary

checker called LanguageTool is available for Writer as a user-installable, third-

party extension.

The OpenOffice.org developers do not pride themselves exclusively on

compatibility with Microsoft file formats, and this cannot be the sole measure of

the quality of the suite. In particular, OOo developers and users are generally

pleased to report that they have the native ability to work with Open Document

 24

(ODF) files; an International Standards Organization approved, royalty and

license-free format. According to http://opendocument.xml.org/overview:

From a technical point of view, ODF is a ZIP archive that contains a
collection of different XML files as well as binary files like
embedded images. The use of XML makes accessing the
document content simple because content can be opened and
changed with simple text editors if necessary. In contrast, the
previously used binary file formats were cryptic and difficult to
process. The ZIP compression guarantees relatively small file
sizes, in order to reduce file storage and transmission bandwidth
requirements.

 As of late spring 2008, the average price of the Microsoft Office 2003

Professional suite was $425 for a single-user retail license. Office is not natively

available for use on any Linux-based platform. Conversely, the OpenOffice.org

suite is available as a free download for the Windows, Linux and Mac OSX

operating systems, and is included with many Linux distributions, including Red

Hat Enterprise Linux. As with all other enterprise software, a decision to employ

a certain office productivity suite cannot be based solely on initial acquisition

price, no matter how low. Product capabilities, as well as the significant other

OSS advantages and challenges listed throughout this document, must factor

into the decision.

 The eighth item on the SDC list is the ICS Viewer. Both the U.S. Army

and U.S. Air Force have used various incarnations of this software to edit

electronic forms instead of paper records; thousands of forms have been

converted to its Extensible Markup Language (XML) format. This process is vital

to meeting goals of the paperless office initiatives mandated by the Government

Paperwork Elimination Act of 1998. The PureEdge application itself has gone

through several substantial changes in the past few years. Most significantly, the

developer, PureEdge, was acquired by IBM in 2005, and the product was

renamed IBM Workplace Forms. More recently, IBM transitioned the application

into its Lotus suite, and it is now known as IBM Lotus Forms.

 25

Across much of the U.S. Army and in parts of the U.S. Air Force, digital

signature software by vendor Silanis is used in conjunction with the PureEdge

and/or IBM form software to enable Common Access Card-based signatures,

further reducing the need for paperwork. This process is, in most cases, entirely

dependent on Windows-specific client-side software. However, the capability

now exists to host the electronic forms on a web server and allow users to edit

them in a web browser. According to an IBM press release about Lotus Forms

3.0, “Businesses and government organizations may now deliver core business

processes to their customers or constituents via the Internet and enable forms

completion — including digital signature capabilities — without concern for

managing the software levels on the consumer's computer” (IBM, 2007). This

capability may bring operating system independence to yet one more application,

and enable digital forms on the Linux desktop.

6. E-mail

While Microsoft Office includes the Outlook e-mail and groupware client,

OpenOffice.org does not provide any similar functionality, perhaps because

several other independent (and already popular) products exist in the OSS

community. Replicating Outlook-based e-mail functionality, however, may be the

biggest obstacle to integrating general-purpose Linux workstations into any DoD

Windows-dominated network. Most military installations rely on Microsoft

Exchange for e-mail and groupware services. While an Exchange server is

capable of providing mail services to clients via the industry-standard Post Office

Protocol (POP) or Internet Message Access Protocol (IMAP), these capabilities

have historically been disabled for security and supportability purposes. In

addition, their use robs clients of most of the groupware functionality offered by

the Exchange server, such as shared calendars, tasks, and other collaborative

features. Therefore, most military installations only permit e-mail clients to

connect to Exchange servers via Exchange's native, proprietary Message

Application Programming Interface (MAPI).

 26

 Without the use of third-party middleware, no OSS e-mail client can

connect to an Exchange server in MAPI mode. However, middleware known as

Brutus (http://www.42tools.com) now exists to enable Novell Evolution e-mail

client (and potentially others) to take full advantage of Exchange functionality.

While employing this middleware server would theoretically be independent of

the operation of the Exchange server, it still goes beyond simple addition of OSS-

based desktop software and is therefore beyond the scope of this document.

Currently, the simplest remedy to the OSS-Exchange barrier is the use of the

Evolution e-mail client, with Outlook Web Access (OWA) enabled on the

Exchange server. OWA need not be permitted to communicate outside the

intranet (something that is often blocked due to security concerns); it simply

serves as the communications channel for internal Evolution clients. When

operated in “Exchange mode” (using OWA), the Evolution client provides both a

look-and-feel and functionality that is very similar to that of Outlook. It can

access the Exchange Global Address List and integrate with DoD Public Key

Infrastructure, allowing users to send and receive digitally signed and encrypted

e-mails (see Appendix A).

 In addition to the closed communications protocol, Outlook and Exchange

also employ a proprietary “personal folders” file format (.pst) that is not usable by

OSS e-mail clients. This fact makes it difficult for users to fully access their email

accounts, particularly stored e-mail, from disparate client platforms. The problem

is not unique to OSS e-mail clients. Many network users in the U.S. Central

Command (USCENTCOM) headquarters use Blackberry communication

devices, which also cannot access .pst files. The solution at USCENTCOM is to

avoid the use of .pst files altogether. Rather than giving users a large network

storage home drive on which to store their .pst's, administrators allocate the

space directly to Exchange mailboxes. This technique can also allow Evolution

and other OSS e-mail client users to access all their mail from anywhere on the

corporate local area network.

 27

The final challenge facing OSS e-mail clients is the Defense Message

System (DMS), a DoD-wide system of record for official message traffic, and the

replacement for the Automatic Digital Network (AUTODIN). DMS is based on

x.509 certificates and hardware tokens called Fortezza cards, but was designed

exclusively around a Microsoft Exchange/Outlook architecture and a specialized

directory tree. None of the required extension software is available for OSS e-

mail clients or the Linux environment. Fortunately, DMS is not required for use

by all DoD members, and sees the most use in classified networks. Additionally,

according to the Defense Information Systems Agency's website, “DMS will

continue to shift from a predominantly writer-to-reader topology to a domain

Fortezza topology” (http://www.disa.mil/main/prodsol/dms.html). Software known

as the Collaborative Messaging System (CMS) by Lockheed Martin, Boldon

James and Microsoft, already exists to address this shift. It allows DMS access

via a web browser, with hardware tokens being located at central server, a

solution that may extend DMS functionality to non-Windows clients.

7. Other Third-party Viewers

The U.S. Air Force SDC includes the ability to play Apple Quicktime,

Adobe Flash and Windows Media files and streams. This functionality is freely

available on multiple Linux distributions, usually in the form of both open and

closed-source solutions. The Java Runtime Engine (JRE) is available for Linux

from both Sun and IBM. Acrobat Reader is available from Adobe, and several

other OSS programs including OpenOffice.org allow for reading from and writing

to PDF files.

8. Substitutions/Equivalents Overview

As described in the last seven sections, OSS offers an array of products to

address every basic need of typical office automation computing. An overview of

the potential alternatives to SDC applications can be found in Table 3 below.

 28

Table 3. List of SDC/OSS Equivalents/Substitutions

Some of the items listed in Table 3 are not available in the default

installation of RHEL. However, RHEL and most other major Linux distributions

provide access to upgrades, bug fixes and additional software packages through

an online repository system. Systems can be set up to either automatically fetch

and install updates, or users can retrieve additions manually via a search

function. This capability can be exploited to address specific Service software

requirements. Software installation tools such as yum can be pointed at several

different repositories simultaneously. A Service would simply need to establish

its own internal repository servers, populated with all required applications (either

Current SDC Software OSS Equivalent/Substitution
Windows XP SP2 with Firewall Enabled Red Hat Enterprise Linux 5.x
SMS 2003 Client N/A
Norton Anti-Virus McAffee Anti-Virus, Clam, etc.
.NET Framework SP2 N/A
ActivCard Gold Card Reader Software N/A
Office 2003 OpenOffice.org 2.x
Visio 2003 Viewer Dia
ICS Viewer Possible Wine implementation
MasterKey Plus (for DMS) N/A
DoD Banner w/Screen Saver DoD Banner w/Screen Saver
Internet Explorer Firefox
Acrobat Reader Acrobat Reader or OSS variant
Quicktime Player Totem or other OSS equivalent
Windows Media Player Totem or other OSS equivalent
Java Runtime Engine Java Runtime Engine
Macromedia Flash Player Plug-in Adobe Flash Plug-in
Shockwave Player Plug-In Adobe Flash Plug-in
MDAC N/A
DoD PKI Certificates DoD PKI Certificates

 29

proprietary or other perhaps modified/vetted OSS) to simplify installation and

maintenance of applications that are not included on standard distributions.

B. PUBLIC KEY INFRASTRUCTURE AND COMMON ACCESS CARD

1. Overview and Regulations

The Common Access Card (CAC), with its embedded Public Key

Infrastructure (PKI) certificates, is quickly becoming the primary authentication

instrument for U.S. Department of Defense (DoD) information systems. While

some internal LAN systems may still be accessed via username and password,

initial login to the NIPRNet (Unclassified but Sensitive Internet Protocol [IP]

Router Network) must now be accomplished via two-factor authentication. This

radical security shift became effective across the DoD as of August 2006,

according to Joint Task Force – Global Network Operations (JTF-GNO)

Computer Tasking Order (CTO) 06-02. Unless otherwise approved by JTF-

GNO, the required “two-factors” are the CAC and Personal Identification Number

(PIN). Although some Internet-facing DoD web servers may (and do) still

operate with username and password combinations, this practice is fading. Web

resources such as the Air Force Portal and Army Knowledge Online accept the

CAC and PIN as their primary means of authentication.

The CAC PKI system is also perfectly suited to email use, and almost all

CAC-holders have the option to send and receive signed and/or encrypted email

messages to and from other CAC users in the DoD PKI sphere. However, all of

this functionality demands that the users' computer system be able to interface

with the CAC, access the embedded key material and use the proper associated

cryptography to perform secure transactions with remote machines.

2. Technical Issues

For DoD users working with any of the recent Microsoft Windows

operating systems, CAC tools and documentation are readily available and are

distributed by the Services, making client-side connectivity a fairly simple

 30

process. Mac OS X is becoming more readily supported; in 2006 the U.S. Army

added Thrusby's ADmitMac for CAC software to its official enterprise software

list. Linux users are still left largely to fend for themselves, although this situation

is slowly changing. At the Defense Information Systems Agency (DISA), for

example, the Open Source Steering Group (OSSG) exists to tackle some of the

basic issues regarding the convergence of Linux, CAC and PKI technologies.

And as smart cards are used internationally for personal banking, government

and corporate identity management, the OSS community has already devoted

much effort to the cause of Linux-based smart card functionality.

 The primary caveat to Linux interoperability is that CAC readers must be

compliant with the PC/SC specification, which has become the de facto, cross-

platform industry standard for smart card compatibility design. Compliance with

PC/SC is also mandated by the Defense Manpower Data Center for all card

readers used by the DoD. To operate in the Linux environment, the card reader

must have Linux driver support. This can come in the form of a proprietary driver

from the vendor, or compatibility with the free, open source USB CCID driver,

courtesy of the Movement for the Use of Smart Cards in a Linux Environment

(MUSCLE) project. From the http://musclecard.com website, “MUSCLE is a

project to coordinate the development of smart cards and applications under

Linux. The purpose is to develop a set of compliant drivers, API's, and a resource

manager for various smart cards and readers for the GNU environment.” The

project's PC/SC Lite middleware has also become ubiquitous in the Linux world

as a means of allowing applications to communicate with smart card readers.

One of the best resources for determining a card reader's Linux

compatibility is the MUSCLE project's USB CCID site, at

http://pcsclite.alioth.debian.org/ccid.html, which contains names and photographs

of many devices.

 According to the OpenSC project (http://www.opensc-

project.org/opensc/wiki/OverView), one needs the following software tools to

make use of a smart card: an application, a library, middleware and a driver. The

 31

application might be a web browser like Firefox or an email client like Novell

Evolution. As previously discussed, the middleware and drivers can be provided

by the MUSCLE project's PC/SC and USB CCID tools, respectively. Finally, the

library used in Linux is known as PKCS (Public Key Cryptographic Standards)

#11, or the Cyrptoki Application Programming Interface (API), and is part of the

Mozilla foundation's Network Security Services (NSS). The two free, open

source PKCS#11 provider libraries are OpenSC and Coolkey. As a point of

reference, the comparable Microsoft library is Crypto API. These libraries allow

applications to interface with smart card tokens without having detailed

knowledge about the card or reader hardware. Additionally, as NSS is Federal

Information Processing Standard 140-2 validated, it meets requirements for

unclassified cryptographic modules used by the U.S. Federal Government.

 For the purposes of this study, RHEL 5.1 Desktop operating system was

used in conjunction with its bundled Mozilla Firefox 1.5 web browser and Novell

Evolution 2.x e-mail client. Further technical information on the procedures used

to set up these clients for use with the CAC can be found in Appendix A of this

document. In short, by copying the Mozilla Network Security Services (NSS)

modules provided by OSSG to the appropriate directories on the client machine,

all DoD Root Certificate Authority information is loaded to the client software, and

the proper PCKS#11 libraries are installed as well. By completing this relatively

simple task, users can access CAC-enabled websites with Firefox, and send and

receive digitally signed and encrypted e-mail with Evolution. It should be noted

that users will still need the public keys of e-mail recipients in order to send

encrypted email. An enterprise-wide listing of all available recipients' keys is

available at the DISA Global Directory Service (https://dod411.gds.disa.mil),

where keys can be downloaded, then easily imported into any email client of

choice. Finally, once the NSS modules are properly loaded into the system,

OpenOffice.org can also take advantage of them to digitally sign documents

(saved in Open Document format) using the CAC.

 32

C. OTHER SECURITY BENEFITS AND CONCERNS

1. Vulnerability and Exploit Overview

Introducing a number of Linux-based workstations with various OSS

applications into an otherwise homogeneous Windows network brings the added

benefit of malware tolerance. Just as diversified crops are less susceptible to a

strain of blight, employing a heterogeneous mix of operating systems and

applications imparts a significantly greater level of virus, trojan and worm

resistance to a corporate network. OSS systems have also historically shipped

with default configurations that are inherently more secure than those of their

Microsoft counterparts, providing less open ports and services for potential

exploits, and giving users less system-wide privileges by default. Finally,

developers of many popular OSS packages have proven adept at releasing

vulnerability fixes before exploits are widely available.

Based on the evidence available at this point, however, one cannot

objectively state that OSS is or is not inherently more or less secure than its

closed source equivalents. The “many eyeballs” theory asserts that, since more

people are examining the source code, flaws will be more readily discovered and

fixed. The counter-argument says that attackers also have access to the same

code, simplifying their task of finding faults and exploiting them first. Additionally,

the “many eyeballs” of code reviewers may more likely be looking for functionality

bugs than security holes.

In August of 2007, Jack Germain of the LinuxInsider technology website

published a two-part story comparing the current state of open- and closed-

source web browser security. His work focused on zero-day browser exploits:

those attack vectors which take advantage of vulnerabilities that were previously

unknown to system owners, defenders and the user community at large. These

chinks in the software armor, instead of being exploited immediately, are

sometimes bought and sold on the malware black market, and are capable of

fetching tens and perhaps hundreds of thousands of dollars per exploit (Miller,

 33

2007). According to Germain's research, “Vulnerability management solutions

firm PatchLink sought a closer view of its customers' concerns over browser

security issues in a recent survey. Responses from 250 customers revealed that

the No. 1 security concern was zero-day vulnerabilities, Paul Zimski, director of

product and market strategy at PatchLink, told LinuxInsider.”

 Germain rather understandably did not reach a conclusion or proffer an

opinion on which type of software (OSS or closed-source) was more secure. But

due to the target-specific nature of zero-day exploits and the fact that they are so

difficult to defend against, the only sure-fire countermeasure is to employ a

heterogeneous mix of systems, ensuring that at least some network hosts are

impervious to the attack. This kind of thinking should resonate with DoD network

security managers as part of a “defense in depth” strategy, as the Department

cannot afford to lose complete network functionality due to the sudden

appearance of one zero-day exploit.

2. Transparency and Backdoors

While neither OSS nor closed-source software may ever be free of

inadvertent coding-error-related vulnerabilities, only OSS offers the transparency

necessary to instill confidence that the software has no intentional backdoors.

Whether software vendors include backdoors for simplified system maintenance

or for more nefarious purposes, they may eventually be discovered and exploited

by interested third parties. A more benign example of this type of programming

is known as the “easter egg.” Famous examples include the simple flight

simulator and car racing games found in older versions of Microsoft Excel.

These sub-programs, unrelated to the title application, can be accessed by

performing a secret series of key presses and mouse clicks. The games are not

harmful to the system (other than unnecessarily using up system storage space),

but serve to illustrate how simple it can be to hide code within a closed source

program.

 Making this scenario more disconcerting is the rampant subcontracting

and off-shoring witnessed in today's software development environment. While a

 34

primary vendor may have the best intentions, subcontracted code modules,

inadequately vetted, can introduce significant security risks. This should be of

particular concern to any DoD agency; as the off-shoring trend is unlikely to be

reversed, it must be factored into software security policies and strategies.

 In certain conditions and to certain customers, Microsoft makes the source

code for its Windows operating system and Office productivity suite available

under the Shared Source Initiative. However laudable, this offering has several

shortcomings that keep it from being truly open. First, only select users can

obtain the source code for review. For example, certain governments may view

the Windows code base under the Government Security Program (GSP). Code

access is tightly restricted via smart card authentication. This limited release

significantly reduces the “many eyeballs” type of security enjoyed by fully open

source software. Additionally, the code is available for review, but may not be

modified in any way (to meet specific needs or fix bugs, for example). Finally,

reviewers may not compile the code into binary form, which would otherwise let

them produce executable versions of the programs in question, identical to those

delivered by the vendor. Without questioning the integrity of Microsoft's

programmers, it is worth mentioning here that the entire development chain,

including the source code of the compiler program, must be open to scrutiny to

assure trust in the open source system.

 In the strictest sense, though, even this is not enough. Unix programmer

Ken Thompson brought this lesson to light in his 1983 Turing Award Lecture

Reflections on Trusting Trust. In this famous treatise, he described a means of

propagating a self-replicating trojan by slipping malicious code into the compiler

program. Whenever the compiler was used to compile its own original source,

the trojan was inserted into the new compiler binary. Thus, the source code of

the compiler could pass muster under examination, even though it too would

become a tainted binary once compiled. This type of attack might be defeated

with the “Diverse Double-Compiling” (DDC) check, a method detailed by David A

 35

Wheeler, but only if the reviewer has access to two independent compilers and

their respective source code. As Wheeler puts it:

. . . there’s a catch: the DDC defense only works if you can get the
source code for your software creation tools, including the
operating system, compiler, and so on. That kind of information is
typically only available for OSS/FS programs! Thus, even in the
case of the dangerous “trusting trust” attack, OSS/FS has a security
advantage (Wheeler, 2007).

3. Department of Homeland Security Code Scan

Although it is a minority opinion, detractors have contended that OSS is

unfit for government and military service because we cannot know who is

contributing to the source code (Wolfe, 2004). This argument would only hold

water if OSS were instead “closed source with random public contribution”

software. Fortunately, it is not. Contributions are not blindly added to mainline

releases, but are scrutinized by application and kernel owners and any number of

interested third parties (perhaps to include the utilizing agencies themselves)

before they are published. After the new code has been publicly released (if it

has even been released in binary form; much OSS is released in source-only

form), the source code is still permanently available for examination by any

curious individuals. Additionally, most prominent OSS projects manage code

contributions with some variant of the Concurrent Version System (CVS). These

systems track contributions as an inherent part of their functionality, making

unnoticed malicious changes even less likely.

Claims of intentional coding malice aside, OSS is as susceptible to human

error as any other software, even with its more open peer review. Whereas

proprietary software vendors might pay to have mission-critical code scrutinized

by third party firms and tools, OSS developers have had, in some cases, neither

the resources nor the motivation to do the same. However, several prominent

OSS packages have become a vital part of the Internet as we know it; calling

them “mission-critical” to the daily business of the nation is not an exaggeration.

 36

In 2006, the Department of Homeland Security recognized this fact and awarded

a research grant to Stanford University, Symantec Corporation and Coverity, a

company that specializes in software development. The aim of the 1.2 million

dollar, three-year project was static analysis of the source code of 40 of the most

prominent OSS packages using Coverity's Prevent software package. Results

are provided to the OSS software maintainers so that bugs can be quickly

corrected. As of the writing of this document, the http://scan.coverity.com project

website claims that almost 8,000 bugs have been fixed since early 2006.

D. BOOTABLE “LIVE” OPERATING SYSTEMS

Several Linux distributions are released (or modified by third parties) so

that the entire operating system can be run from the installation media, be it CD,

DVD, USB memory, or other type of digital storage. No files are installed to the

host computer’s hard drive; the entire system is loaded to and run from Random

Access Memory (RAM). Known as Live CD's, these distributions present an

interesting option for easily-revised, quickly distributed, complete bundled

operating environments. They may be a perfect solution for remote/mobile

classified computing, where a user boots the CD and establishes an encrypted

session with a remote classified server. When finished working, he or she then

removes the CD and simply reboots the laptop, leaving no classified material on

that machine. The client system need not even be fitted with a hard drive, to

ensure that no trace of classified data exists when the system is powered-down.

As an aside, Live CD's present an excellent opportunity for both

administrators and users to gain familiarity with OSS operating systems and

applications without disturbing existing Windows installations. Users could even

be given a Live CD of the enterprise's standard OSS desktop configuration to test

and use at home in a risk-free manner.

E. APPLICATION AND CODE RE-USE

One intangible benefit of OSS is its potential for re-use throughout related

communities of interest. Many government agencies perform similar functions,

 37

only at different levels or across different geographic regions. Instead of

spending millions of dollars to procure the same tools over and over again, these

agencies might take advantage of OSS code that has already been developed or

modified by another agency for the same purpose. The National Center for Open

Source Policy and Research has, through a site called

http://GovernmentForge.org, laid the groundwork for this kind of e-government

OSS re-use in the civilian public sector. In the DoD, areas of potential overlap

include personnel and finance systems, crew scheduling databases,

maintenance record databases and more general-purpose computing tools such

as web portals and office automation systems. These software needs are not

unique to any one unit, command, or service, so why should these entities work

independently to purchase or develop overlapping solutions? To sweeten the

deal, most citizens may be pleasantly surprised to find that a number of their

government’s OSS development expenditures and contributions could be made

available for use by the public at large. Such was the case with the National

Security Agency’s work on a Mandatory Access Control version of the Linux

kernel, released to the public as Security Enhanced Linux (SE Linux). SE Linux

code is now present in many popular Linux distributions, to include RHEL.

 Shared libraries have long been used in the programming world to help

reduce duplication of effort. The OSS community has taken this concept to a

macro-level to develop means of dealing with unique, nuanced requirements that

intrude on an otherwise shared purpose. Instead of developing custom-built

solutions for each requirement, a modular framework is first established around a

common core. Plug-ins or modules are then written to address specific needs.

This paradigm can be witnessed in action in the Apache web server and the

Linux Pluggable Authentication Module (PAM) frameworks. Especially where

this modular framework is concerned, the potential benefits of such code re-use

are even more apparent.

Standardization and reusable components have historically been key to

moving hitherto artisan practices into the streamlined, efficient world of

 38

industrialization. In software development, rapid standardization has been

realized by means of open communication via the Internet. OSS and open

standards themselves have seen growth and innovation that would likely not

have been possible in numerous smaller, sequestered work environments. And

OSS has been able to progress at its current pace largely due to the availability

of quality, reusable, interchangeable components. Such collaborative potential is

a significant factor that must be tied back into TCO for use in a “best value”

procurement decision.

 39

IV. POTENTIAL OPEN SOURCE SOFTWARE CHALLENGES

A. REGULATIONS GOVERNING SOFTWARE USE

1. Information Assurance

Although DoD computer systems are not limited to running one particular

operating system from any one vendor, each of the Services must observe

regulations which restrict the information systems software and hardware that

may be attached to the DoD's official networks. As described briefly in Chapter

III of this document, DoD-level doctrine exists to establish technical definitions

and Department-wide standards for the use of networked operating systems,

which fall under the category of Information Assurance (IA) or IA-enabled

Information Technology (IT) products. According to DoD Directive 8500.01 (p.

18, section E2.1.21), IA-enabled IT is a “product or technology whose primary

role is not security, but which provides security services as an associated feature

of its intended operating capabilities. Examples include such products as

security-enabled web browsers, screening routers, trusted operating systems,

and security-enabled messaging systems”.

 DoD Directive 8500.01 then mandates that all IA-enabled IT products

must “comply with the evaluation and validation requirements of National

Security Telecommunications and Information Systems Security Policy Number

11” (NSTISSP-11). That document, now maintained by the Committee on

National Security Systems (CNSS), specifies that “the acquisition of COTS IA

and IA-enabled IT products (to be used on systems entering, processing, storing,

displaying, or transmitting national security information) . . . shall be limited only

to those which have been evaluated and validated in accordance with the criteria,

schemes, or programs specified . . .” Those programs are listed below:

 The International Common Criteria for Information Security Technology

Evaluation Mutual Recognition Arrangement (CCRA). The CCRA is a

 40

mechanism by which international member government agencies can take

advantage of evaluations that were performed in different countries. While

useful, the CCRA limits internationally recognized evaluations to EAL 4.

 The National Security Agency (NSA) / National Institute of Standards and

Technology (NIST) National Information Assurance Partnership (NIAP)

Evaluation and Validation Program. The NIAP Evaluation and Validation

Program is the Common Criteria process in the United States.

 The NIST Federal Information Processing Standard (FIPS) validation

program. The FIPS validation program is required for any technology that

provides cryptography for United States government information systems.

 Where cryptography is concerned, it is important to note that an entire

system does not need FIPS certification, only the cryptographic modules it uses.

In the case of desktop software, this usually boils down to the components that

handle digital signature and encryption. For many Linux systems, Secure

Sockets Layer (SSL) and Transport Layer Security (TLS), perhaps the most

commonly-used cryptography standards on the Internet, are provided by the

OpenSSL libraries. The Mozilla Firefox web browser, Thunderbird e-mail client,

OpenOffice.org, and other applications use the Network Security Services (NSS)

libraries, which provide SSL, TLS and various Public Key Cryptography

Standards (PKCS). PKCS implementations bring digital signature, encryption

and smart card capabilities to any program written to take advantage of the

PKCS libraries. Both NSS and OpenSSL are FIPS 140-2 certified.

 All of these rigid regulations governing software use in the DoD can

significantly complicate the process of integrating any typical proprietary software

into a DoD network, and this applies to OSS as well. While the rules help to

provide a secure, standardized baseline for information technology products on

the Global Information Grid, they also serve as barriers to entry for smaller

software projects. Common Criteria and FIPS validation can cost from tens to

hundreds of thousands of dollars and take years to achieve (GAO, 2006, p. 19).

 41

The time factor can keep otherwise mature products out of federal institutions,

and is also directly at odds with the rapid development models used by most

software development, and especially OSS projects. “This disconnect between

industry and NIAP has resulted in an awkward evaluation process that ensures

that security products are well into their life cycles, if not obsolete, by the time

they can be evaluated, vendors say” (Jackson, 2007).

 The financial factor is an obvious barrier to entry for any community-

maintained software suite. In the OSS world, this has sometimes been

overcome by either direct sponsorship from a utilizing agency, or third party

support from an interested vendor. In the case of OpenSSL, the U.S. Defense

Medical Logistics Standard Support (DMLSS) spearheaded the initiative to obtain

FIPS 140-2 validation. According to comments from Debora Bonner, Director of

Operations at DMLSS (http://www.linuxdevices.com/news/NS4742716157.html),

The DMLSS program is heavily dependent on OpenSSL based
cryptography, so this validation will save us hundreds of thousands
of dollars," Bonner added. "Multiple commercial and government
entities, including Medical Health Systems (MHS), have been
counting on this validation to avoid massive software licensing
expenditures. The three year validation process was an ordeal, but
our persistence finally paid off.

As a result of this one effort by DMLSS and others, numerous government

agencies are now able to legally employ free OpenSSL cryptography in federal

programs.

2. Licensing

The Open Source Institute lists several dozen “open” software licenses

(http://www.opensource.org/licenses/category). Of these, nine are categorized

as popular or widely used. Among these nine, the most prevalent in the OSS

community is the GNU General Public License (GPL). The GPL has been

termed a “viral” software license, in that derivative works must also be licensed

under the GPL, which serves to maintain the open source process. Additionally,

there has been some concern that GPL-licensed products might not be suitable

 42

for government use and modification, since any publicly released, derived

programs must have their source code made available as well. This may be a

valid concern in some cases. In the case of generic, non-sensitive programs,

releasing source code fixes and/or modifications would serve to benefit the

original program and perhaps the nation at large. However, for sensitive

projects, the resulting binary programs should not be made publicly available

anyway, and therefore the modified source would not be an issue of concern,

either. This all hinges on whether or not the GPL-derived, modified code remains

within the organization. Per the http://www.GNU.org Frequently Asked

Questions page,

The GPL does not require you to release your modified version, or
any part of it. You are free to make modifications and use them
privately, without ever releasing them. This applies to organizations
(including companies), too; an organization can make a modified
version and use it internally without ever releasing it outside the
organization.

 Finally, it should be noted that OSS licensed under the GPL (or similar

licensing for software meeting the Open Source Initiative's definition) is not public

domain freeware/shareware, specifically because of its unique licensing.

However, DoD Directive 8500.01 (p. 6, Section 4.19) makes an interesting (if

unfortunate) link between public domain software (freeware) and products with

limited or no warranty:

Public domain software products, and other software products with
limited or no warranty, such as those commonly known as freeware
or shareware, shall only be used in DoD information systems to
meet compelling operational requirements. Such products shall be
thoroughly assessed for risk and accepted for use by the
responsible DAA [Designated Approving Authority].

This excerpt from DoDD 8500.01, while well intentioned, places perhaps

undue emphasis on warranty, and may dissuade the use of OSS in some cases

where it is the best option. Many pieces of OSS are offered with limited or no

warranty. This includes software distributed under the GNU General Public

 43

License, and most other popular OSS licenses. By comparison, many popular

pieces of proprietary software are offered with either no warranty (and, in fact,

vendor indemnification clauses), or very little warranty. For example, the

Microsoft XP End User License Agreement (EULA) offers a limited, 90-day

warranty against defects, but the warranty does not extend to service

packs or other hot fixes applied after the initial 90-day period

(http://www.microsoft.com/windowsxp/sp2/proeula.mspx). Additionally, the EULA

specifies that users are not entitled to any damages whatsoever if the software in

any way fails to perform as expected. Therefore, Windows XP is delivered with a

warranty, but most of it seems to serve the vendor more than the user. Again,

this only serves to highlight the perhaps negative (and questionable) link

between free software and warranty in DoDD 8500.01.

3. Further Intellectual Property Issues

In 2003, the SCO Group sued IBM and threatened Linux users around the

world, stating that they (SCO) owned the Unix copyright, and that Linux was

infringing on this copyright by illegally using Unix code. To date, these

allegations have not been publicly proven. However, several large ISV's, to

include Red Hat, HP and Novell, have offered their Linux customers

indemnification against any potential copyright or patent infringement lawsuits.

The Red Hat Open Assurance program, for example, also includes

replacing/modifying any potentially infringing code, or obtaining the rights for a

customer to continue using the code legally, should such an issue arise. It now

appears unlikely that users of Linux code will face such copyright infringement

concerns (the SCO Group filed for Chapter 11 bankruptcy protection in late

2007), but the stated protections offered by large Linux systems vendors may

remain valuable to potential government customers.

 44

B. COMMUNITY-SPECIFIC SOFTWARE NEEDS

1. Open Source Software Modification

Numerous OSS applications have reached levels of capability and

maturity that have already made them dominant tools for their respective jobs.

Examples include the Apache web server, MySQL database, Sendmail e-mail

server, BIND Domain Name System and Linux operating system (at least in a

server capacity). Still, OSS chosen for use by DoD agencies may require

modifications beyond what the standard commercial packages offer. And while it

is true that the availability of source code makes OSS inherently more adaptable

than closed-source software, there are costs involved in taking advantage of this

benefit beyond the price of hiring programmers to modify the code. Most notably,

interested entities must deal with the dilemma of forking, which occurs when a

modified piece of code is not reintroduced into the “mainline” software

distribution. Instead, the mainline code authors continue along their original path,

making modifications and releases independent (perhaps even unaware) of the

forked product. As a result, the agency which has forked the code in its own

direction may be incapable of taking advantage of subsequent mainline

advances such as bug-fixes, security patches and other feature updates. An

eventual solution to these concerns may be a series of Government Off-the-Shelf

(GOTS) OSS products with COTS roots.

An example, albeit a vastly simplified one, can be found in Scientific Linux.

This Linux distribution was created by the Fermi National Accelerator Laboratory

and the European Organization for Nuclear Research (CERN). The distribution’s

creators have taken the publicly available source code of Red Hat Enterprise

Linux, compiled it, and made several additions and changes to suit their own

needs. However, they state very clearly that their distribution will always be

binary-compatible with the corresponding Red Hat release. In this way, any

software compiled for Red Hat systems can also be seamlessly run on Scientific

Linux. It is a simple logical step to apply this concept to the DoD’s needs. Each

 45

branch of service (and/or major command within that service) could have its own

distribution, populated with special-purpose programs, public key certificates, and

even document libraries that meet that community's needs. Updates would be

centrally controlled, undergoing testing for security vulnerabilities and other flaws,

but essentially keeping in line with open source community releases.

2. Porting and Application Compatibility

When an acquisition authority considers supplanting existing, familiar

systems with new OSS alternatives, he or she must determine and weigh all the

support-related costs of migrating existing capabilities to the new systems. In

some cases, this may be done with little turmoil if users can accomplish the same

tasks natively in the new environment. However, where legacy applications are

in heavy use and have no apparent equivalent on the new OSS platform, they

may have to be ported to the new architecture to enable continued productivity.

In short, porting typically entails significant software development; rewriting the

code that was intended to run on one platform so that it can be natively executed

on another platform. This can have a considerable negative impact on both cost

and schedule and may even be detrimental to performance depending on the

quality of the code re-engineering.

To tackle the challenge of migrating Windows applications to the Linux-

based desktop, one alternative to porting is use of the Wine (Wine Is Not an

Emulator) environment. As its name implies (and its developers are keen to

point out), Wine is, in fact, a Windows application compatibility layer, not an

emulator. It translates Windows instructions into those understood by Linux,

allowing users to install and use many (though not all) Windows applications in a

Linux environment. The application database (http://appdb.winehq.org/) contains

a fairly comprehensive list of Windows programs that have been tested by the

user community, along with a score that corresponds to each program's level of

functionality in Wine. Wine is one example of how the DoD's efforts to contribute

to open source projects might serve an incredibly large audience both inside and

outside the U.S. government. For example, the ICS Viewer, which is discussed

 46

in Chapter II, Section A5, is somewhat functional under Wine. Many official U.S.

Air Force forms can be opened and viewed with ICS Viewer under Wine on a

Linux system (Figure 1), but text entry is problematic at best. DoD code

contributions to Wine might resolve not only this, but various other problems

experienced by related Windows programs in the Wine environment.

Figure 1. ICS Viewer in Wine on Red Hat Linux

 47

3. Virtualization and Centralized Computing

This thesis has focused largely on integrating OSS-based systems into

Windows environments, rather than suggesting widespread system replacement.

However, increasing the number of primarily OSS-based desktops in the

enterprise reduces the number of licenses required for Microsoft Windows and

any proprietary software that runs on it, such as Microsoft Office, Adobe Acrobat,

etc. The goal of proprietary license reduction need not conflict entirely with the

needs of specific users who take full advantage of features that may only be

available on Windows-based systems. Several technologies exist to allow

efficient use of a limited number of proprietary software licenses. These include

virtualization, remote/centralized computing, and application streaming.

“Virtualization” is perhaps the loudest buzzword in desktop computing

technology in 2008. It is a technique whereby a guest operating system can be

run inside a virtual environment, controlled by a “hypervisor” or “virtual machine

monitor.” Until quite recently, the hypervisor on desktop systems had to be run

inside a complete host operating system (Figure 2), a technique which severely

limited the speed and scalability of guest systems. However, currently available

workstation and server processors contain the ability to allow hardware-assisted

virtualization, whereby system resources are shared to the hypervisor at a

hardware level, sometimes with no full host operating system running underneath

the guests. This greatly increases speed and efficiency, and allows for better

sharing of the hardware resources between the guest operating systems.

 48

Figure 2. Windows in VMware on Red Hat Linux

Traditional centralized desktop computing, known as the “terminal server”

system, provides on-demand access to a complete operating environment,

entirely hosted on a server and delivered live over the network. This remote

window to the operating environment places great demands on the network, and

is known for its user-unfriendliness where rich media is involved. Screen

updates can be painfully slow, such that working with simple presentations is

difficult, and multimedia playback (let alone editing) is not advisable. For many

core business applications, though, terminal server setups offer a cost-effective

way for a subset of users to access Microsoft Windows profiles from any device

that has a remote desktop client (Figure 3).

 49

Figure 3. Windows Remote Desktop from Linux

Hybrid solutions now exist to address the shortcomings of remote

computing, incorporating a melding of both remote desktop and virtualization

technologies. The recently released XenDesktop product from Citrix is one such

example (Figure 4).

 50

Figure 4. Citrix XenDesktop Virtualization

Source: http://www.citrix.com

Figure 5. Vmware Virtual Desktop Infrastructure

Source: http://www.vmware.com

 51

C. HETEROGENEOUS MIX AND SUPPORT CHALLENGES

1. End Users

If users are expected to migrate to new applications in a foreign OSS

environment, they may require retraining, bringing a significant new cost into the

equation. Authors of OSS desktop software have been increasingly keen to

avoid this problem. Their recent work has demonstrated an understanding that,

in order to spur adoption, they must design their programs to operate (at least on

the surface) in a manner similar to their Microsoft Windows counterparts. In fact,

the general “look and feel” of the Windows Graphical User Interface (GUI) has

been all but replicated in a majority of Linux distributions such as RHEL, Novell’s

SUSE Linux, Canonical’s Ubuntu Linux and others. Intermediate-level Windows

users can very likely accomplish general productivity tasks in these OSS

operating systems with little or no familiarization training. “Whilst the first

versions of Linux were fairly difficult to use for non-technicians, the product is

widely considered to have matured at the end of the 1990s and now there is no

significant difference in terms of ease of use between Windows and most

commercial Linux operating systems” (European Commission, 2004, p. 127).

The same holds true for OpenOffice.org, the primary OSS competitor to the

Microsoft Office suite.

2. Systems Administrators

Initial purchase costs are rather simple to determine and incorporate into

an overall budget, but they only account for a fraction of the overall system life

cycle costs. Approximately 60 to 80 percent of a program’s software costs fall in

Post Deployment Software Support (Petross, MN3331 lecture, Winter 2008).

While having a heterogeneous mix of systems may offer security benefits, it

almost certainly comes at a price.

All claims of simplicity and compatibility of OSS described throughout this

document are highly reliant upon an end user operating environment that has

been expertly crafted and maintained by a truly skilled group of systems

 52

integrators and administrators. While this is also true of most proprietary

software networks, there is indeed a need for a different skill set, especially in the

case of Linux systems administration. Again, the common themes of strong

centralized standardization and control are paramount. Fortunately, DoD

networks are evolving in this direction more every year, so adding OSS into this

structure might not be so daunting a challenge as it would have been a decade

ago.

A separate systems management framework also can present additional

costs both in physical systems and administrator training. This issue cannot be

swept aside or taken lightly, but it is also broad enough to warrant its own

separate review outside of this document. Fortunately, OSS systems

management options have matured beyond their simple command line roots into

much more user-friendly (and GUI-based) tools. The command line interface

(CLI) is still an option if administrators prefer it, but programs like Webmin make

user management and other systems administration a point-and-click affair.

Similarly, the Red Hat Network (RHN) makes it rather trivial to manage a large

number of systems via a web interface, providing software installation and

removal, hardware inventory, and other tools (Figure 6).

 53

Figure 6. The Red Hat Network

 54

THIS PAGE INTENTIONALLY LEFT BLANK

 55

V. CONCLUSIONS

A. RECOMMENDATIONS TO DEPARTMENT OF DEFENSE
INFORMATION TECHNOLOGY MANAGERS

1. Official Guidance Overview

Several years ago, a MITRE report stated that “at present, FOSS is

neither approved nor disapproved in most parts of the DoD. This limbo status

makes program, project, and developer decisions regarding FOSS difficult”

(MITRE, 2003, p. 22). Fortunately, in the intervening years, several national,

DoD and service-level policies have been released which clarify the status of

OSS, put it on a level playing field with proprietary, closed-source software and

provide relevant guidance for acquisitions professionals.

At the national level, The Office of Management and Budget (OMB)

reminds senior procurement executives that OSS licenses differ from proprietary

software licenses and “may affect the use, the security, and the total cost of

ownership of the software and must be considered when an agency is planning a

software acquisition” (U.S. OMB, 2004). In the DoD, Chief Information Officer

John Stenbit released a memo to the services in 2003 stating that “DoD

Components acquiring, using or developing OSS must ensure that the OSS

complies with the same DoD policies that govern Commercial off the Shelf

(COTS) and Government off the Shelf (GOTS) software” (U.S. DoD CIO, 2003).

Finally, the U.S. Navy’s Chief Information Officer wrote “A key piece in supporting

the DoD goal is the ability to utilize OSS as part of the Department of the Navy’s

(DoN’s) Information Technology (IT) portfolio” (U.S. DoN, 2007). These policy

letters serve to reinforce the status of OSS as a viable alternative in DoD

software development and acquisitions.

 56

2. Open Architecture in Government Contracting

For the software-savvy acquisitions professional, the thought of employing

OSS in any given project most likely summons conflicting feelings of elation and

apprehension. Elation comes from the prospect of low or non-existent initial and

recurring licensing fees for the software. But apprehension creeps in at the

thought of all the unknowns. Will the existing workforce be able to easily and

effectively use and/or maintain the system? If not, how much training will be

required? What kinds of impacts will the OSS have on interoperability, both

within the organization and with external systems and users? The answers to

these questions and many others, when combined with raw dollar purchase

prices, will help to determine a system’s Total Cost of Ownership (TCO).

Proprietary software vendors often note the aforementioned questions as drivers

of potentially higher TCO when considering OSS. Indeed, these factors must be

weighed against benefits to bring the acquisitions authority closer to the desired

outcome of “best value” in government contracting. In the end, the decision

about whether or not to employ OSS for a given task will depend on whether or

not it is the best tool for the job, when all factors (including those addressed in

this document) are taken into consideration.

OSS has been (perhaps unwittingly) given a second-tier status by some

acquisitions authorities, although it often comes closer to the standards that are

set for weapon system procurements. When the DoD prepares a multi-billion-

dollar contract for aircraft or vehicle construction, it mandates that the vendor

must supply technical drawings and schematics along with the delivered

hardware. The same applies to construction or upgrades of military facilities.

This is done in order to ensure that internal, organic maintenance units, as well

as contracted third parties, can perform any required service on the vehicle or

structure. Without such supporting documentation, DoD agencies would be

indefinitely locked into one vendor for weapon system support, a concept that is

shunned in the acquisitions community. Yet somehow, this standard does not

carry over to the desktop computer software world. Vendors typically deliver

 57

proprietary code that cannot be extended, updated or otherwise modified by a

third party, precisely due to lack of source code and adequate documentation.

In September of 2007, the Defense Federal Acquisition Regulation

Supplement (DFARS) was amended, instructing contracting officers to more

carefully consider DoD long-term needs for technical data rights for weapon

systems. This was mandated specifically to allow a strategy that includes “the

development of maintenance capabilities within DoD; or competition for contracts

for sustainment of the system or subsystems” (DFARS 207.106). Additionally,

the supplement states:

Although the law does not address requirements for computer
software, it is long-standing DoD policy to apply the same or similar
requirements to both technical data and computer software, since
many issues are common to both. Therefore, this interim DFARS
rule applies to both technical data and computer software.

The “technical data rights,” translated in preceding paragraph to also

cover computer software rights, could reasonably be interpreted to include

program source code and access to any API documentation that the DoD might

require to maintain the software and/or allow for future sustainment contracts

through competing corporations.

 The U.S. Navy's Program Executive Office for Integrated Warfare Systems

has taken a leadership role in promoting open architectures in DoD contracting,

and its Naval Open Architecture (NOA) Guidebook for Program Managers also

addresses the need for government rights to technical data:

NOA is the confluence of business and technical practices yielding
modular, interoperable systems that adhere to open standards with
published interfaces. This approach significantly increases
opportunities for innovation and competition, enables re-use of
components, facilitates rapid technology insertion, and reduces
maintenance constraints. NOA delivers increased warfighting
capabilities in a shorter time at reduced cost. The U.S.
Government’s (hereinafter “Government”) ability to acquire at least
Government Purpose Rights (GPR) to data and intellectual property
and to minimize proprietary elements to the lowest component level
is critical to this effort.

 58

 While it is true that open architecture does not directly equate to open

source, the two tend to go hand-in-hand. Most OSS packages are written around

open communications standards and file formats. Additionally, when open

standards are used throughout an enterprise, it simplifies the further integration

of OSS. Therefore, IT managers are advised to employ open standard

technologies wherever possible.

 Web-based applications that conform to World Wide Web Consortium

(W3C) standards offer cross-platform capability that can be centrally maintained

and updated, with no client-side installation or maintenance effort. Other

technologies that treat software as a service, and can do so with little regard for

client platform, offer a similarly future-proof and centrally maintainable solution.

Such solutions almost make the desktop operating environment irrelevant, so

long as it conforms to open standards and provides a basic set of what are

currently considered commodity operating functions.

B. RECOMMENDATIONS FOR FUTURE RESEARCH

This thesis includes a section on Common Access Card (CAC) technology

and an appendix devoted to testing capabilities of Common Access Cards in

OSS environments. However, due to the lack of a suitable testing environment,

there is no survey of the ability of OSS-based clients to log into Windows/Active

Directory domains using CACs. Several vendors, including Red Hat and

Novell/SUSE advertise the ability to integrate Linux-based clients rather well into

these environments. And as previously discussed, two-factor authentication

(usually in the form of CAC login) is mandatory throughout the DoD for access to

the NIPRNet. It would be of great value to continue this research by determining

to what extent OSS-based client systems can take advantage of Windows

domain logins (and associated controls, such as Group Policy Objects),

particularly when using CAC authentication.

 The full-scale integration of OSS systems goes beyond domain

membership. Terry Bollinger noted in his 2003 MITRE report (p. 24), OSS

“seems to work best when people come to it, and not vice-versa.” This approach

 59

may be acceptable for smaller-scale integration of specific tools in niche

applications. However, it cannot be the case for large-scale, professional

deployments of OSS-based desktop systems. Standardization is key to healthy,

economically viable enterprise management. Following in the path of current

desktop systems standard configuration efforts, OSS must be deployed in a

similar manner. Exactly how this should be accomplished, to what extent, and by

whom is a topic worthy of further study.

 This thesis began with an observation that the DoD spends millions of

dollars each year on typical desktop computer software. Alternatively, Open

Source Software is often referred to as “Free Open Source Software” throughout

the industry both because of the freedoms it affords users (modification, re-

distribution, etc.) and the fact that it is usually available free of charge.

Paradoxically, as discussed throughout this document, the DoD is often not able

to take advantage of all such OSS, usually due to information assurance

regulations. In the case of operating systems, vendors expend significant time,

effort and money to bring OSS packages into line with DoD requirements. DoD

agencies are then limited to those offerings. But must this be the case? On one

hand, DoD agencies might be thankful (despite the financial cost for support

licenses) that these vendors are both interested in tackling the challenge of

software certification, and are also willing and able to provide follow-on support.

Alternatively, the DoD might consider a series of internally certified and

supported OSS systems, taking some of what is currently available off-the-shelf

and using it as a starting point for DoD-specific variants. This might still be done

in cooperation with OSS vendors, but at significant cost savings over typical, per-

seat support licenses.

C. CLOSING THOUGHTS

OSS has received increased attention within DoD technology and

acquisition circles in recent years, and with good reason. OSS offers solutions

that can satisfy a majority of official business needs with (at least up-front)

significant financial savings. Desktop OSS is already in use on niche classified

 60

systems, and is generally accepted as a secure, transparent and trusted

alternative for personal, corporate and government use worldwide. It can

interface with the majority of Windows-based server and client systems widely

used on DoD networks. It provides portable, modular code that lends itself to

customization, and guarantees that using agencies won't be locked into any one

vendor or platform. Many systems administrators and IT managers on the front

lines of DoD networks understand these advantages, are familiar with numerous

OSS products, and are eager to reap the benefits of those tools in an official,

sanctioned capacity.

 Chapter III of this document addressed the functionality delivered by the

U.S. Air Force's Standard Desktop Configuration, and how currently available

OSS tools might match those capabilities. In summary, OSS offerings provided

what might be called the 90% solution; they would likely be adequate for a

considerable number of users performing typical office automation and

communication tasks. Unfortunately, the SDC does not represent the entirety of

applications used by U.S. Air Force units. Almost every specialized Community

of Interest (COI) utilizes some specific set of tools that are installed on top of the

SDC. Some of the centralized computing tools described in Chapter IV are

currently used to satisfy the needs of these COI's, namely remote desktop

computing via terminal servers and Citrix-based application delivery. These

solutions integrate painlessly into OSS desktop environments. The remaining

OS-specific, locally installed applications may be problematic enough to keep

OSS out of those offices for the time being. Then again, in this era of stretched

military budgets, tools that provide the 90% solution at a fraction of the cost may

prove sufficiently attractive to military leadership to warrant replacement of the

trouble-making niche applications.

 OSS offers the DoD (and other branches of government) many attractive

alternatives to proprietary desktop computer software, but the potential comes

with a significant number of caveats. OSS solutions are not simple drop-in

replacements for current proprietary desktop systems. As this document has

 61

described, they can capably fulfill most typical office automation needs with a

high level of cross-platform compatibility and a relatively low level of user

retraining. But the details of implementation must be carefully addressed one-by-

one in a methodical systems development life cycle approach. Each of the

Services has the resources to develop OSS test platforms with very low initial

acquisition costs. These resources must be tapped and fully utilized to drive

standardized, top-down deployments for successful, widespread OSS

integration. If acquisition authorities decide to venture down the OSS path, the

journey must be undertaken with a very high level of preparation and

commitment, but the potential pay-off is exciting, to say the least.

 62

THIS PAGE INTENTIONALLY LEFT BLANK

 63

LIST OF REFERENCES

Altman, S. W. (2003, Apr 7). Evaluating Potential Alternatives to Total
Dependence on Microsoft for Desktop Operating Systems and
Applications. Retrieved 2/27/2008 from
http://stinet.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifi
er=ADA415978.

Asiri, S. (2003, Mar). Open Source Software. SIGCAS Comput. Soc. 33, 1,
Retrieved 3/1/2008 from. DOI=
http://doi.acm.org/10.1145/966498.966501.

Boutin, P. (2006, Jul 3). Where’s My Google PC? Retrieved 3/3/2008 from
http://www.slate.com/id/2144896/.

Business Wire (2007, Jul 16). Red Hat Enterprise Linux 5 Independently
Certified at Common Criteria EAL4+ Under NIAP Scheme by atsec and
HP. Retrieved 2/4/2008 from
http://www.businesswire.com/portal/site/google/index.jsp?ndmViewId=new
s_view&newsId=20070716005868&newsLang=en.

Center for Strategic and International Studies (CSIS) (2007, Aug 20). Global
Policies on Open Source Software. Retrieved 2/27/2008 from
http://www.csis.org/component/option,com_csis_pubs/task,view/id,4009/ty
pe,1/.

Committee on National Security Systems (CNSS) (2003, Jul). National
Information Assurance Acquisition Policy. (National Security
Telecommunications and Information Systems Security Policy (NSTISSP)
No. 11 Revised Fact Sheet). Retrieved 2/27/2008 from
http://www.cnss.gov/Assets/pdf/nstissp_11_fs.pdf.

Corbet, J. (2007, Feb 20). Who Wrote 2.6.20? Retrieved 1/20/08 from
http://lwn.net/Articles/222773/.

Corbet, J., Kroah-Hartman, G., McPherson, A. (2008, Apr). Linux Kernel
Development (April 2008). Retrieved 4/17/2008 from https://www.linux-
foundation.org/publications/linuxkerneldevelopment.php.

Dowling, T. (2000). Software COTS Components – Problems, And Solutions?
Retrieved 2/12/2008, from http://handle.dtic.mil/100.2/ADA394911.

 64

European Commission (2004, Mar 24). Commission Decision of 24.03.2004
relating to a proceeding under Article 82 of the EC Treaty (Case COMP/C-
3/37.792 Microsoft). Retrieved 3/4/2008 from
http://www.microsoft.com/presspass/download/legal/europeancommission
/03-24-06EUDecision.pdf.

Evers, J. (2003, Jan 15). Microsoft Grants Governments Access to Windows.
Retrieved 4/5/2008 from http://www.pcworld.com/article/id,108804-
page,1/article.html.

Germain, J. (2007, Aug 14). Zero-Day Browser Exploits, Part 1 – Is Open
Source Safer than IE? Retrieved 4/5/2008 from
http://www.linuxinsider.com/story/58796.html.

Humphrey, W.S. (1989). Managing the Software Process. Boston: Addison-
Wesley.

IBM (2007, Oct 2). IBM Brings Web 2.0 Usability Features to Web-Based
Electronic Forms Processing. Retrieved 2/4/2008 from http://www-
03.ibm.com/industries/consumerproducts/doc/content/news/pressrelease/
3164239123.html.

Ingo, H. (2004). Open Life – The Philosophy of Open Source. [Electronic
Version] Retrieved 4/2/2008 from: http://www.openlife.cc.

Jackson, W. (2007). Under Attack – Common Criteria Has Loads of Critics, but
Is It Getting a Bum Rap? Retrieved 2/4/2008 from
http://www.gcn.com/print/26_21/44857-1.html.

Klein, A. (2008, Jan 24). The Complex Crux of Wireless Warfare. The
Washington Post. [Electronic Version] Retrieved 3/4/2008 from
http://www.washingtonpost.com/wp-
dyn/content/article/2008/01/23/AR2008012303695_2.html?sid=ST200801
2303998.

McMillan, R. (2007, Jun 18). Red Hat Linux Gets Top Government Security
Rating. Retrieved 2/12/2008 from
http://www.computerworld.com.au/index.php/id;306842912;fp;4194304;fpid;1.

Miller, C. (2007, May 6). The Legitimate Vulnerability Market – Inside the
Secretive World of 0-Day Exploit Sales. Retrieved 4/5/2008 from
http://weis2007.econinfosec.org/papers/29.pdf.

MITRE Corporation (2001, Oct). A Business Case Study of Open Source
Software. Retrieved 2/4/2008 from
http://www.mitre.org/work/tech_papers/tech_papers_01/kenwood_softwar
e/index.html.

 65

MITRE Corporation (2003). Use of Free and Open Source Software (FOSS) in
the U.S. Department of Defense. Retrieved 1/18/2008 from
http://terrybollinger.com/dodfoss/dodfoss_pdf.pdf.

National Information Assurance Partnership (NIAP). NIAP Approved Common
Criteria Testing Laboratories. Retrieved 2/4/2008 from http://www.niap-
ccevs.org/cc-scheme/cctls/.

Olavsrud, T. (2003, Jun 3). Defense Department Issues Open Source Policy.
Retrieved 2/12/2008 from http://www.internetnews.com/dev-
news/article.php/2216311.

Petross, D. (2008, Feb). Principles of Acquisition and Program Management.
Presented at a MN3331 lecture at the Naval Postgraduate School.

Seiferth, C. J. Open Source and These United States. Retrieved 2/27/2008 from
http://skyscraper.fortunecity.com/mondo/841/documents/99-184.html.

Thompson, K. (1984, Aug). Reflections on trusting trust. Communications of the
ACM 27, 8, 761-763. DOI= http://doi.acm.org/10.1145/358198.358210.

U.S. Defense Information Systems Agency (2006, Mar 28). Unix Security
Technical Implementation Guide, Version 5, Release 1.

U.S. Department of the Air Force (2002). AF-CIO Policy Memorandum 02-14;
Acquisition of Information Assurance (IA) and IA-Enabled Information
Technology (IT) Products. (U.S. Air Force Chief Information Officer
Memorandum). Retrieved 1/20/2008 from http://www.niap-ccevs.org/cc-
scheme/pm02_14_aq_ia_it_products.pdf.

U.S. Department of Defense, Chief Information Officer (DoD CIO) Memorandum
(2003, May 28). Open Source Software in the Department of Defense.
Retrieved 1/20/2008 from http://iase.disa.mil/policy-guidance/oss-in-
dodmemo.pdf.

U.S. Department of Defense, Chairman of the Joint Chiefs of Staff Instruction
(CJCSI) (2006, Mar 8). CJCSI 6212.01, Interoperability and Supportability
of Information Technology and National Security Systems. Retrieved
4/10/2008 from
http://www.dtic.mil/cjcs_directives/cdata/unlimit/6212_01.pdf.

U.S. Department of Defense (2002). Information Assurance. (U.S. Department
of Defense Directive 8500.01). Retrieved 2/18/2008 from
www.dtic.mil/whs/directives/corres/pdf/851001p.pdf.

 66

U.S. Department of Defense (2004). Public Key Infrastructure and Public Key
Enabling. (U.S. Department of Defense Instruction 8520.2). Retrieved
2/18/2008 from http://www.dtic.mil/whs/directives/corres/pdf/852002p.pdf.

U.S. Department of Defense (2008). Defense Federal Acquisition Regulation
Supplement (DFARS), Subpart 207.1 – Acquisition Plans. Retrieved
5/12/2008 from
http://www.acq.osd.mil/dpap/dars/dfars/html/current/207_1.htm#207.106.

U.S. Department of Defense (2008). Defense Federal Acquisition Regulation
Supplement (DFARS); Technical Data Rights (DFARS Case 2006-D055).
Retrieved 5/12/2008 from
http://www.acq.osd.mil/dpap/dars/dfars/changenotice/2007/20070906/E7-
17422.htm.

U.S. Department of the Navy (2007). Department of the Navy Open Source
Software Guidance. [Department of the Navy Chief Information Officer
(DoN CIO) Memorandum]. Retrieved 1/22/2008 from
www.doncio.navy.mil/Download.aspx?AttachID=261.

U.S. Deputy Under Secretary of Defense, Advanced Systems and Concepts
(2006, Jun 7). Open Technology Development Roadmap. Retrieved
3/4/2008 from http://www.acq.osd.mil/jctd/articles/OTDRoadmapFinal.pdf.

U.S. Government Accountability Office (GAO) (2006, Mar). Information
Assurance – National Partnership Offers Benefits, but Faces Considerable
Challenges. Retrieved 2/27/2008 from
http://www.gao.gov/new.items/d06392.pdf.

U.S. Navy Program Executive Office, Integrated Warfare Systems (PEO-IWS7)
(2006, Jul 7). Naval Open Architecture Contract Guidebook. Retrieved
3/4/2008 from
https://acc.dau.mil/CommunityBrowser.aspx?id=18016&view=w.

U.S. Office of Management and Budget (U.S. OMB) (2004, Jul 1). Software
Acquisition. Retrieved 2/27/2008 from
http://www.whitehouse.gov/omb/memoranda/fy04/m04-16.html.

Van Oers, M. (2007, Mar 20). OSX Malware Not Taking Off Yet. Retrieved
2/4/2008 from
http://www.avertlabs.com/research/blog/index.php/2007/03/20/osx-
malware-not-taking-off-yet/.

Wait, P. (2005, Jan 10). Services Demand Security in Enterprise Deals.
Retrieved 1/10/2008 from http://www.gcn.com/print/24_1/31468-1.html.

 67

Wheeler, David A. (2007, June). Open Source Software (OSS) in U.S.
Government Acquisitions. Retrieved 3/4/2008 from
https://www.softwaretechnews.com/stn_view.php?stn_id=42&article_id=8
3.

Wheeler, David A. (2007, April 16). Why Open Source Software / Free Software
(OSS/FS, FLOSS, or FOSS)? Look at the Numbers! Retrieved 5/12/2008
from http://www.dwheeler.com/oss_fs_why.html.

Wolfe, A. (2004, Apr 9). Green Hills Calls Linux ‘Insecure’ for Defense.
Retrieved 2/8/2008 from
http://eetimes.com/showArticle.jhtml?articleID=18900949.

Yasin, R. (2007, Apr 2). The Long Road Toward Standard Configuration.
Retrieved 1/15/2008 from http://www.gcn.com/print/26_07/43383-1.html.

Yasin, R. (2007, Jun 4). Winged Migration. Retrieved 1/15/2008 from
http://www.gcn.com/print/26_13/44414-1.html?topic=workflow.

 68

THIS PAGE INTENTIONALLY LEFT BLANK

 69

APPENDIX A. COMMON ACCESS CARD TESTING

A. TEST ENVIRONMENT

This survey was conducted using various Intel IA-32 (x86) -based

computers: one Dell Pentium IV desktop, one Dell Pentium III laptop, and one

IBM Pentium-M laptop. All three systems were running the Red Hat Enterprise

Linux 5.1 Desktop with all standard installation options except SE Linux, in order

to simplify troubleshooting. The RHEL systems were all registered with the Red

Hat Network (RHN) under the Naval Postgraduate School's (NPS) site license,

allowing the simplified installation of those software packages available on the

RHN.

 RHEL clients use the yum (Yellowdog Updater, Modified) program to

locate and download pre-compiled binary software packages from Red Hat's

repositories. A graphical front-end called Pirut makes it even easier to search or

browse the catalog and select available programs. However, systems registered

with the RHN are only subscribed to a base software distribution channel by

default, which limits the number of programs to which they have access. To

allow the clients to “see” the larger pool of software in Red Hat's online

repositories, an administrator must log into the RHN and add additional sub-

channels to the profile of each computer (or group of computers). In this study,

the RHEL Desktop Supplementary and RHEL Desktop Workstation channels

were enabled for all three machines.

 Over the past several years, the SCM Microsystems SCR331 USB has

become one of the most commonly-used CAC readers throughout the DoD. It is

a white plastic external device, meant to sit on a user's desktop. Older versions

of the reader may contain firmware that is not CCID 1.0 compatible. Also, some

variants sold by ActivIdentity may look physically similar, but

unfortunately use a different firmware which is not compatible with the USB

CCID driver. This has been addressed in other documents, including

 70

the “CAC on a Mac” literature produced at NPS

(http://stinet.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD

A445103) and again in OSSG's documentation. To summarize these previous

findings, the older SCM readers and ActivCard (now ActivIdentity) USB 2.0

readers can be “upgraded” so that they contain the latest firmware of the SCM

Microsystems devices, effectively turning them into capable SCR331's. That

procedure was followed for this study. One noteworthy stumbling block,

however, was the version of ActivCard Gold middleware used on the Windows

platform doing the upgrade. The newer version 6.x, which is being distributed by

the U.S. Air Force for home use, would not perform the firmware flash; the result

was consistently a complete system crash (blue screen). When this middleware

was removed and replaced with the older ActivCard 3.x, the flash process

worked.

 The Dell SK3106 keyboard and newer Dell smart card keyboards (in use

at computer labs around NPS) were also used in this study and worked without

any modification.

B. FIREFOX WEB BROWSER

Firefox is the default web browser bundled with RHEL 5, and there are two

ways of making it operate with CAC's. The first (and simplest) method is to use

Network Security Services (NSS) files provided by DISA's Open Source Steering

Group (OSSG):

1. From a computer with a NIPRNet connection (address that resolves to

.mil), go to http://ossg.disa.mil/projects/linuxcac/ and download the RPM

(Red Hat Package Manager) files containing the DoD CA certificates.

2. Close Firefox.

3. Install the RPMs by double-clicking them.

4. Go to your home folder, and click on View, then Show Hidden Files.

5. Browse to the ./mozilla/firefox directory. There, you will see one more

folder made of a random-looking series of characters; this is the profile

directory. Open that folder.

 71

6. Backup (change the names of) cert8.db and secmod.db files, as they will

be replaced.

7. Copy the cert8.db and secmod.db files from /etc/pki/nssdb (provided by

OSSG's RPMs) to the Firefox profile directory where the originals were

found in the previous step.

 All of the DoD CA's are now loaded into Firefox's Certificate Authorities list

(courtesy of the cert8.db file), and a new PKCS#11 security module has been

loaded as a security device (from the secmod.db file). Upon visiting a CAC-

enabled website, you should be prompted for your “master password”, which is

your PIN.

 Alternatively, the PKCS#11 module can be manually added as a security

device from within Firefox:

1. Under the Preferences, Advanced menu, Security tab, click on Security

Devices, then the Load button.

2. Choose any name for the Module Name, and specify the path to the

Coolkey library (in RHEL5, use: /usr/lib/pkcs11/libcoolkeypk11.so).

 Upon restarting the browser with the CAC inserted in the reader, the token

will be accessible to the system, but will not typically be used unless all required

DoD Certificate Authorities (CA) have been manually imported as well. One

method is to export individual CA certificate files from Internet Explorer on a

Windows client, then import them one by one into Firefox. This is a very tedious

process, especially compared with the simplicity of copying the cert8.db file

provided by OSSG.

 As an added benefit, OpenOffice.org automatically takes advantage of

NSS secmod.db and cert8.db files that have been loaded in the user's Firefox

profile. Therefore, after the steps above have been completed, OpenOffice.org

can also use the CAC to digitally sign documents (though only if they are saved

in the OpenDocument .odt format).

 72

C. EVOLUTION E-MAIL CLIENT

A similar procedure must be followed to gain CAC functionality in Evolution.

First, install the OSSG CA RPMs as described above.

1. From a computer with a NIPRNet connection (address that resolves to

.mil), go to http://ossg.disa.mil/projects/linuxcac/ and download the RPM

files containing the CA certificates.

2. Go to your home folder and click View, then Show Hidden Files.

3. Browse to the .evolution directory.

4. Backup (change the names of) cert8.db and secmod.db files, as they will

be replaced.

5. Copy the cert8.db and secmod.db files from /etc/pki/nssdb to the

~/.evolution directory (in step 3).

 Again, there is a manual install method (provided by a Navy Research

Labs website: (https://airborne.nrl.navy.mil/PKI), but this is not recommended

since one must still import all the CA certificates manually. From a command

prompt in your home directory, simply type:

modutil -add "Coolkey" -libfile /usr/lib/pkcs11/libcoolkeypk11.so -dbdir .evolution

 Once the CAC is working in Evolution, it is possible to sign emails

immediately, but one must still obtain the public keys of recipients in order to

send encrypted emails. For this purpose, DISA's Global Directory Service Query

(https://dod411.gds.disa.mil/) is invaluable. Simply search for a DoD user, then

download their public key and import it into Evolution by going to Edit,

Preferences, Certificates, the Contact Certificates tab, and clicking Import. Be

sure to have your CAC inserted before visiting the GDS Query site.

 73

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Douglas E. Brinkley
Naval Postgraduate School
Monterey, California

4. Rex Buddenberg
Naval Postgraduate School
Monterey, California

5. Donna Burych
Naval Postgraduate School
Monterey, California

6. Diana Petross
Naval Postgraduate School
Monterey, California

7. Karl Pfieffer
Naval Postgraduate School
Monterey, California

8. Daniel Warren
Naval Postgraduate School
Monterey, California

9. Dan C. Boger, PhD
Naval Postgraduate School
Monterey, California

